Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017)
Google Scholar
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)
Google Scholar
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data 4, 170117 EP, September 2017. https://doi.org/10.1038/sdata.2017.117
CrossRef
Google Scholar
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
CrossRef
Google Scholar
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. CoRR abs/1802.10508 (2018). http://arxiv.org/abs/1802.10508
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. CoRR abs/1809.10483 (2018). http://arxiv.org/abs/1809.10483
Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. CoRR abs/1809.10486 (2018). http://arxiv.org/abs/1809.10486
Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, et al. [6], pp. 450–462. https://doi.org/10.1007/978-3-319-75238-9_38
CrossRef
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694
CrossRef
Google Scholar
Milletari, F., Navab, N., Ahmadi, S.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation. CoRR abs/1606.04797 (2016). http://arxiv.org/abs/1606.04797
Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017)
Google Scholar
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
CrossRef
Google Scholar
Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: the missing ingredient for fast stylization. CoRR abs/1607.08022 (2016). http://arxiv.org/abs/1607.08022
Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, et al. [6], pp. 178–190. https://doi.org/10.1007/978-3-319-75238-9_16
CrossRef
Google Scholar
Yang, T.L., Ou, Y.N., Huang, T.Y.: Automatic segmentation of brain tumor from MR images using SegNet: selection of training data sets. In: Crimi, et al. [6], pp. 450–462. https://doi.org/10.1007/978-3-319-75238-9
Google Scholar