Brain Tumour Segmentation Method Based on Supervoxels and Sparse Dictionaries

  • J. P. Serrano-RubioEmail author
  • Richard Everson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)


This paper presents an automatic method for brain tumour segmentation from magnetic resonance images. The method uses the feature vectors obtained by an efficient feature encoding approach which combines the advantages of the supervoxels and sparse coding techniques. Extremely Randomized Trees (ERT) algorithm is trained using these feature vectors to detect the whole tumour and for multi-label classification of abnormal tissues. A Conditional Random Field (CRF) algorithm is implemented to delimit the region where the brain tumour is located. The obtained predictions of the ERT are used to estimate probability maps. The probability maps of the images and the Euclidean distance between the feature vectors of neighbour supervoxels define the conditional random field energy function. The minimization of the energy function is performed via graph cuts. The proposed methods are evaluated on real patient data obtained from BraTS 2018 challenge. Results demonstrate that proposed method achieves a competitive performance on the validation dataset using Dice score is: 0.5719, 0.7992 and 0.6285 for enhancing tumuor, whole tumour and tumour core respectively. The achieved performance of this method on testing set using Dice score is: 0.5081, 0.7278 and 0.5778 for enhancing tumuor, whole tumour and tumour core respectively.


Brain tumour segmentation Sparse coding techniques Supervoxels 



The first author’s research was partially supported by a CONACyT postdoctoral grant and CONACyT Research Grant 256126. The first author would also like to thank the University of Exeter for its hospitality. We thank to the organizing committee of MICCAI BraTS 2018 for help us in the evaluation of the performance of our method.


  1. 1.
    Soltaninejad, M., et al.: Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in flair MRI. Int. J. Comput. Assist. Radiol. Surg. 12(2), 183–203 (2017)CrossRefGoogle Scholar
  2. 2.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  3. 3.
    Havaei, M., Larochelle, H., Poulin, P., Jodoin, P.M.: Within-brain classification for brain tumor segmentation. Int. J. Comput. Assist. Radiol. Surg. 11(5), 777–788 (2016)CrossRefGoogle Scholar
  4. 4.
    Zimeras, S., Gortzis, L., Pylarinou, C.: Shape analysis in radiotherapy and tumor surgical planning using segmentation techniques. In: Sklavos, N., Hübner, M., Goehringer, D., Kitsos, P., et al. (eds.) System-Level Design Methodologies for Telecommunication, pp. 159–173. Springer International Publishing, Cham (2014). Scholar
  5. 5.
    Hutt, H., Everson, R., Meakin, J.: 3D intervertebral disc segmentation from MRI using supervoxel-based CRFs. In: Vrtovec, T., et al. (eds.) Computational Methods and Clinical Applications for Spine Imaging, pp. 125–129. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  6. 6.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  7. 7.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Archive (2017)Google Scholar
  8. 8.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Archive (2017)Google Scholar
  9. 9.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, pp. 801–808 (2007)Google Scholar
  10. 10.
    Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)Google Scholar
  11. 11.
    Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., Van Gool, L.: SEEDS: superpixels extracted via energy-driven sampling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 13–26. Springer, Heidelberg (2012). Scholar
  12. 12.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  13. 13.
    Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-art. Comput. Vis. Image Underst. 166, 1–27 (2017)CrossRefGoogle Scholar
  14. 14.
    Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010). Scholar
  15. 15.
    Van den Bergh, M., Boix, X., Roig, G., Van Gool, L.: SEEDS: superpixels extracted via energy-driven sampling. Int. J. Comput. Vis. 111(3), 298–314 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)CrossRefGoogle Scholar
  17. 17.
    Bakas, S., Reyes, M., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv preprint arXiv:1811.02629 (2018)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Information Technologies LaboratoryTechnological Institute of IrapuatoGuanajuatoMexico
  2. 2.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations