van Asch, C.J., Luitse, M.J., Rinkel, G.J., van der Tweel, I., Algra, A., Klijn, C.J.: Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 9(2), 167–176 (2010)
CrossRef
Google Scholar
Bansal, A., Chen, X., Russell, B., Ramanan, A.G., et al.: PixelNet: representation of the pixels, by the pixels, and for the pixels. arXiv preprint arXiv:1702.06506 (2017)
Bansal, A., Russell, B., Gupta, A.: Marr revisited: 2D-3D alignment via surface normal prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5965–5974 (2016)
Google Scholar
Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L.: Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function. arXiv preprint arXiv:1707.04912 (2017)
Chen, L., Bentley, P., Rueckert, D.: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage: Clin. 15, 633–643 (2017)
CrossRef
Google Scholar
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
CrossRef
Google Scholar
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Choi, Y., Kwon, Y., Lee, H., Kim, B.J., Paik, M.C., Won, J.H.: Ensemble of deep convolutional neural networks for prognosis of ischemic stroke. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 231–243. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_22
CrossRef
Google Scholar
Grewal, M., Srivastava, M.M., Kumar, P., Varadarajan, S.: RADNET: radiologist level accuracy using deep learning for hemorrhage detection in CT scans. arXiv preprint arXiv:1710.04934 (2017)
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456 (2015)
Google Scholar
Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Analysis 35, 18–31 (2017)
CrossRef
Google Scholar
Hwang, S., Park, S.: Accurate lung segmentation via network-wise training of convolutional networks. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 92–99. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_11
CrossRef
Google Scholar
Islam, M., Ren, H.: Multi-modal PixelNet for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 298–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_26
CrossRef
Google Scholar
Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1175–1183. IEEE (2017)
Google Scholar
Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)
Google Scholar
Kalita, J., Misra, U., Vajpeyee, A., Phadke, R., Handique, A., Salwani, V.: Brain herniations in patients with intracerebral hemorrhage. Acta Neurol. Scand. 119(4), 254–260 (2009)
CrossRef
Google Scholar
Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)
CrossRef
Google Scholar
Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109–117 (2011)
Google Scholar
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional models for semantic segmentation. In: CVPR, vol. 3, p. 4 (2015)
Google Scholar
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Google Scholar
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)
Google Scholar
Saulle, M.F., Schambra, H.M.: Recovery and rehabilitation after intracerebral hemorrhage. In: Seminars in Neurology, vol. 36, p. 306. NIH Public Access (2016)
Google Scholar
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)
CrossRef
Google Scholar
Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494 (2016)
Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. arXiv preprint arXiv:1704.08545 (2017)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)
Google Scholar