Skip to main content

Volumetric Adversarial Training for Ischemic Stroke Lesion Segmentation

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11383)

Abstract

Ischemic stroke is one of the most common and yet deadly cerebrovascular diseases. Identifying lesion area is an essential step for stroke management and outcome assessment. Currently, manual delineation is the gold standard for clinical diagnosis. However, inter-annotator variances and labor-intensive nature of manual labeling can lead to observer bias or potential disagreement of between annotators. While incorporating a computer-aided diagnosis system may alleviate these issues, other challenges such as highly varying shapes and difficult boundaries in the lesion area make the designing of such system non-trivial. To address these issues, we propose a novel adversarial training paradigm for segmenting ischemic stroke lesion. The training procedure involves the main segmentation network and an auxiliary critique network. The segmentation network is a 3D residual U-net that produces a segmentation mask in each training iteration while critique network enforces high-level constraints on the segmentation network to produce predictions that mimic the ground truth distribution. We applied the proposed model on the 2018 ISLES stroke lesion segmentation challenge dataset and achieved competitive results on the training dataset.

Keywords

  • 3D convolution neural networks
  • Adversarial training
  • Ischemic Stroke Lesion Segmentation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feigin, V.L., Lawes, C.M., Bennett, D.A., Anderson, C.S.: Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2(1), 43–53 (2003). https://doi.org/10.1016/S1474-4422(03)00266-7. http://www.sciencedirect.com/science/article/pii/S1474442203002667

    CrossRef  Google Scholar 

  2. Gillebert, C.R., Humphreys, G.W., Mantini, D.: Automated delineation of stroke lesions using brain ct images. NeuroImage: Clin. 4, 540–548 (2014). https://doi.org/10.1016/j.nicl.2014.03.009. http://www.sciencedirect.com/science/article/pii/S2213158214000394

    CrossRef  Google Scholar 

  3. Goodfellow, I.J., et al.: Generative Adversarial Networks. arXiv e-prints, June 2014

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

  5. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981). https://doi.org/10.1109/TASSP.1981.1163711

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. CoRR abs/1611.08408 (2016). http://arxiv.org/abs/1611.08408

  7. Maier, O., et al.: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017). https://doi.org/10.1016/j.media.2016.07.009. http://www.sciencedirect.com/science/article/pii/S1361841516301268

    CrossRef  Google Scholar 

  8. Moseley, M.E., et al.: Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn. Reson. Med. 14(2), 330–346 (1990)

    CrossRef  Google Scholar 

  9. Praveen, G., Agrawal, A., Sundaram, P., Sardesai, S.: Ischemic stroke lesion segmentation using stacked sparse autoencoder. Comput. Biol. Med. 99, 38–52 (2018). https://doi.org/10.1016/j.compbiomed.2018.05.027. http://www.sciencedirect.com/science/article/pii/S0010482518301409

    CrossRef  Google Scholar 

  10. Quan, T.M., Hildebrand, D.G.C., Jeong, W.: FusionNet: a deep fully residual convolutional neural network for image segmentation in connectomics. CoRR abs/1612.05360 (2016). http://arxiv.org/abs/1612.05360

  11. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

    Google Scholar 

  12. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Yu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, HY. (2019). Volumetric Adversarial Training for Ischemic Stroke Lesion Segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science(), vol 11383. Springer, Cham. https://doi.org/10.1007/978-3-030-11723-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11723-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11722-1

  • Online ISBN: 978-3-030-11723-8

  • eBook Packages: Computer ScienceComputer Science (R0)