The Electronic Determinants of Spin Crossover Described by Density Functional Theory

Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)


Spin crossover (SCO) plays a vital role in living systems and in many emerging technologies, and the accurate prediction and design of SCO systems is of high current priority. Density functional theory (DFT) is the state-of-the-art tool for this purpose due to its ability to describe large molecular electronic systems with an accuracy that can be predictive if carried out correctly. However, the SCO tendency, i.e., the free-energy balance of high- and low-spin states, is extremely sensitive to the theoretical description and physical effects such as dispersion, relativistic effects, and vibrational entropy. This chapter summarizes the recent fundamental insight into SCO gained from DFT and efforts that approach the accuracy needed (~10 kJ/mol) for rational design of SCO to become reality.


Spin crossover Density functional theory (DFT) Entropy Spectrochemical series Coordination chemistry 


  1. 1.
    Halcrow MA (2013) Spin-crossover materials: properties and applications. WileyGoogle Scholar
  2. 2.
    Gütlich P, Goodwin HA (2004) Spin crossover—an overall perspective. In: Spin crossover in transition metal compounds I. Springer, pp 1–47Google Scholar
  3. 3.
    Létard J-F, Guionneau P, Goux-Capes L (2004) Towards spin crossover applications. Spin Crossover Transit Met Compd III 1–19Google Scholar
  4. 4.
    Brooker S (2015) Spin crossover with thermal hysteresis: practicalities and lessons learnt. Chem Soc Rev 44:2880–2892PubMedCrossRefGoogle Scholar
  5. 5.
    Gütlich P, Garcia Y, Goodwin HA (2000) Spin crossover phenomena in Fe(II) complexes. Chem Soc Rev 29:419–427CrossRefGoogle Scholar
  6. 6.
    Harding DJ, Harding P, Phonsri W (2016) Spin crossover in iron (III) complexes. Coord Chem Rev 313:38–61CrossRefGoogle Scholar
  7. 7.
    Kumar KS, Ruben M (2017) Emerging trends in spin crossover (SCO) based functional materials and devices. Coord Chem Rev 346:176–205CrossRefGoogle Scholar
  8. 8.
    Guionneau P (2014) Crystallography and spin-crossover. A view of breathing materials. Dalt Trans 43:382–393CrossRefGoogle Scholar
  9. 9.
    Ruiz E (2014) Charge transport properties of spin crossover systems. Phys Chem Chem Phys 16:14–22PubMedCrossRefGoogle Scholar
  10. 10.
    Cambi L, Szegö L (1931) Über die magnetische Susceptibilität der komplexen Verbindungen. Berichte der Dtsch Chem Gesellschaft A B Ser 64:2591–2598Google Scholar
  11. 11.
    Šalitroš I, Madhu NT, Boča R, Pavlik J, Ruben M (2009) Room-temperature spin-transition iron compounds. Chem Mon 140:695–733CrossRefGoogle Scholar
  12. 12.
    Kepp KP (2017) Heme: from quantum spin crossover to oxygen manager of life. Coord Chem Rev 344:363–374CrossRefGoogle Scholar
  13. 13.
    Scheidt WR, Reed CA (1981) Spin-state/stereochemical relationships in iron porphyrins: implications for the hemoproteins. Chem Rev 81:543–555CrossRefGoogle Scholar
  14. 14.
    Jensen KP, Ryde U (2004) How O2 binds to heme: reasons for rapid binding and spin inversion. J Biol Chem 279:14561–14569PubMedCrossRefGoogle Scholar
  15. 15.
    Gaspar AB, Muñoz MC, Real JA (2006) Dinuclear iron (II) spin crossover compounds: singular molecular materials for electronics. J Mater Chem 16:2522–2533CrossRefGoogle Scholar
  16. 16.
    Bousseksou A, Molnár G, Demont P, Menegotto J (2003) Observation of a thermal hysteresis loop in the dielectric constant of spin crossover complexes: towards molecular memory devices. J Mater Chem 13:2069–2071CrossRefGoogle Scholar
  17. 17.
    Miyamachi T, Gruber M, Davesne V, Bowen M, Boukari S, Joly L, Scheurer F, Rogez G, Yamada TK, Ohresser P (2012) Robust spin crossover and memristance across a single molecule. Nat Commun 3:938PubMedCrossRefGoogle Scholar
  18. 18.
    Linares J, Codjovi E, Garcia Y (2012) Pressure and temperature spin crossover sensors with optical detection. Sensors 12:4479–4492PubMedCrossRefGoogle Scholar
  19. 19.
    Salmon L, Molnár G, Zitouni D, Quintero C, Bergaud C, Micheau J-C, Bousseksou A (2010) A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles. J Mater Chem 20:5499–5503CrossRefGoogle Scholar
  20. 20.
    Bartual-Murgui C, Akou A, Thibault C, Molnár G, Vieu C, Salmon L, Bousseksou A (2015) Spin-crossover metal–organic frameworks: promising materials for designing gas sensors. J Mater Chem C 3:1277–1285CrossRefGoogle Scholar
  21. 21.
    Manrique-Juarez MD, Mathieu F, Shalabaeva V, Cacheux J, Rat S, Nicu L, Leïchlé T, Salmon L, Molnár G, Bousseksou A (2017) A bistable microelectromechanical system actuated by spin-crossover molecules. Angew Chem 129:8186–8190CrossRefGoogle Scholar
  22. 22.
    Shepherd HJ, Il’ya A, Quintero CM, Tricard S, Salmon L, Molnár G, Bousseksou A (2013) Molecular actuators driven by cooperative spin-state switching. Nat Commun 4:2607Google Scholar
  23. 23.
    Harvey JN, Poli R, Smith KM (2003) Understanding the reactivity of transition metal complexes involving multiple spin states. Coord Chem Rev 238:347–361CrossRefGoogle Scholar
  24. 24.
    Sorai M, Nakano M, Miyazaki Y (2006) Calorimetric investigation of phase transitions occurring in molecule-based magnets. Chem Rev 106:976–1031PubMedCrossRefGoogle Scholar
  25. 25.
    Molnár G, Salmon L, Nicolazzi W, Terki F, Bousseksou A (2014) Emerging properties and applications of spin crossover nanomaterials. J Mater Chem C 2:1360–1366CrossRefGoogle Scholar
  26. 26.
    Liu T, Zheng H, Kang S, Shiota Y, Hayami S, Mito M, Sato O, Yoshizawa K, Kanegawa S, Duan C (2013) A light-induced spin crossover actuated single-chain magnet. Nat. Commun. 4:2826CrossRefGoogle Scholar
  27. 27.
    Cirera J, Ruiz E (2015) Theoretical modeling of two-step spin-crossover transitions in FeII dinuclear systems. J Mater Chem C 3:7954–7961CrossRefGoogle Scholar
  28. 28.
    Kepp KP (2013) Consistent descriptions of metal–ligand bonds and spin-crossover in inorganic chemistry. Coord Chem Rev 257:196–209CrossRefGoogle Scholar
  29. 29.
    Toftlund H (2001) Spin equilibrium in solutions. Chem Mon 132:1269–1277CrossRefGoogle Scholar
  30. 30.
    Paulsen H, Schünemann V, Wolny JA (2013) Progress in electronic structure calculations on spin-crossover complexes. Eur J Inorg Chem 2013:628–641CrossRefGoogle Scholar
  31. 31.
    Saito Y, Takemoto J, Hutchinson B, Nakamoto K (1972) Infrared studies of coordination compounds containing low-oxidation-state metals. I. Tris (2,2′-bipyridine) and tris (1,10-phenanthroline) complexes. Inorg Chem 11:2003–2011CrossRefGoogle Scholar
  32. 32.
    Sorai M, Seki S (1974) Phonon coupled cooperative low-spin 1A1 high-spin 5T2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals. J Phys Chem Solids 35:555–570CrossRefGoogle Scholar
  33. 33.
    Kershaw Cook LJ, Kulmaczewski R, Mohammed R, Dudley S, Barrett SA, Little MA, Deeth RJ, Halcrow MA (2016) A unified treatment of the relationship between ligand substituents and spin state in a family of iron (II) complexes. Angew Chem Int Ed 55:4327–4331CrossRefGoogle Scholar
  34. 34.
    Paulsen H, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Free energy of spin-crossover complexes calculated with density functional methods. Inorg Chem 40:2201–2203PubMedCrossRefGoogle Scholar
  35. 35.
    Kulshreshtha SK, Sasikala R, König E (1986) Calorimetric investigations of the low-spin (1A1) ⇄ high-spin (5T2) transition in solid dithiocyanatobis(2,2′-BI-2-thiazoline iron(III). Chem Phys Lett 123:215–217CrossRefGoogle Scholar
  36. 36.
    Kepp KP (2016) Theoretical study of spin crossover in 30 iron complexes. Inorg Chem 55:2717–2727PubMedCrossRefGoogle Scholar
  37. 37.
    Homma Y, Ishida T (2018) A new S = 0⇄ S = 2 “Spin-crossover” scenario found in a Nickel (II) Bis (nitroxide) system. Chem Mater 30:1835–1838CrossRefGoogle Scholar
  38. 38.
    Shimura Y, Tsuchida R (1956) Absorption spectra of Co(III) complexes. II. Redetermination of the spectrochemical series. Bull Chem Soc Jpn 29:311–316CrossRefGoogle Scholar
  39. 39.
    Jørgensen CK (1959) Electron transfer spectra of hexahalide complexes. Mol Phys 2:309–332CrossRefGoogle Scholar
  40. 40.
    Baker WA Jr, Bobonich HM (1964) Magnetic properties of some high-spin complexes of iron (II). Inorg Chem 3:1184–1188CrossRefGoogle Scholar
  41. 41.
    König E, Madeja K (1966) Unusual magnetic behaviour of some iron (II)–bis-(1, 10-phenanthroline) complexes. Chem Commun 61–62Google Scholar
  42. 42.
    Koenig E, Madeja K (1967) 5T2-1A1 Equilibriums in some iron (II)-bis (1, 10-phenanthroline) complexes. Inorg Chem 6:48–55CrossRefGoogle Scholar
  43. 43.
    König E, Madeja K (1967) Infra-red spectra at the 5T2-1A1 cross-over in iron (II) complexes. Spectrochim Acta Part A Mol Spectrosc 23:45–54CrossRefGoogle Scholar
  44. 44.
    Stoufer RC, Busch DH, Hadley WB (1961) Unusual magnetic properties of some six-coordinate cobalt(II) complexes—electronic isomers. J Am Chem Soc 83:3732–3734CrossRefGoogle Scholar
  45. 45.
    Pauling L (1932) The nature of the chemical bond. III. The transition from one extreme bond type to another. J Am Chem Soc 54:988–1003CrossRefGoogle Scholar
  46. 46.
    Tsuchida R (1938) Absorption spectra of co-ordination compounds. I. Bull Chem Soc Jpn 13:388–400CrossRefGoogle Scholar
  47. 47.
    Fajans K (1923) Struktur und Deformation der Elektronenhüllen in ihrer Bedeutung für die chemischen und optischen Eigenschaften anorganischer Verbindungen. Naturwissenschaften 11:165–172CrossRefGoogle Scholar
  48. 48.
    König E (1968) Some aspects of the chemistry of bis (2,2′-dipyridyl) and bis (1,10-phenanthroline) complexes of iron (II). Coord Chem Rev 3:471–495CrossRefGoogle Scholar
  49. 49.
    Houghton BJ, Deeth RJ (2014) Spin-state energetics of FeII complexes-the continuing voyage through the density functional minefield. Eur J Inorg Chem 2014:4573–4580CrossRefGoogle Scholar
  50. 50.
    Deeth RJ, Anastasi AE, Wilcockson MJ (2010) An in silico design tool for Fe(II) spin crossover and light-induced excited spin state-trapped complexes. J Am Chem Soc 132:6876–6877PubMedCrossRefGoogle Scholar
  51. 51.
    Deeth RJ, Halcrow MA, Kershaw Cook LJ, Raithby PR (2018) Ab initio ligand field molecular mechanics and the nature of metal-ligand π-bonding in Fe(II) 2,6-di(pyrazol-1-yl)pyridine spin crossover complexes. Chem Eur J 24:5204–5212PubMedCrossRefGoogle Scholar
  52. 52.
    Mortensen SR, Kepp KP (2015) Spin propensities of octahedral complexes from density functional theory. J Phys Chem A 119:4041–4050PubMedCrossRefGoogle Scholar
  53. 53.
    Takemoto JH, Hutchinson B (1973) Low-frequency infrared spectra of complexes which exhibit magnetic crossover. I. Iron(II) complexes of 1,10-phenanthroline and 2,2′-bipyridine. Inorg Chem 12:705–708CrossRefGoogle Scholar
  54. 54.
    Kepp KP (2011) The ground states of iron(III) porphines: Role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies. J Inorg Biochem 105:1286–1292PubMedCrossRefGoogle Scholar
  55. 55.
    Ashley DC, Jakubikova E (2017) Ironing out the photochemical and spin-crossover behavior of Fe (II) coordination compounds with computational chemistry. Coord Chem, RevCrossRefGoogle Scholar
  56. 56.
    Phonsri W, Davies CG, Jameson GNL, Moubaraki B, Ward JS, Kruger PE, Chastanet G, Murray KS (2017) Symmetry breaking above room temperature in an Fe (ii) spin crossover complex with an N4O2 donor set. Chem Commun 53:1374–1377CrossRefGoogle Scholar
  57. 57.
    Yamasaki M, Ishida T (2015) First Iron(II) spin-crossover complex with an N5S coordination sphere. Chem Lett 44:920–921CrossRefGoogle Scholar
  58. 58.
    Phan H, Hrudka JJ, Igimbayeva D, Lawson Daku LM, Shatruk M (2017) A simple approach for predicting the spin state of homoleptic Fe(II) tris-diimine complexes. J Am Chem Soc 139:6437–6447PubMedCrossRefGoogle Scholar
  59. 59.
    Scott HS, Staniland RW, Kruger PE (2018) Spin crossover in homoleptic Fe(II) imidazolylimine complexes. Coord Chem Rev 362:24–43CrossRefGoogle Scholar
  60. 60.
    Reiher M, Salomon O, Hess BA (2001) Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor Chem Acc 107:48–55CrossRefGoogle Scholar
  61. 61.
    Salomon O, Reiher M, Hess BA (2002) Assertion and validation of the performance of the B3LYP* functional for the first transition metal row and the G2 test set. J Chem Phys 117:4729–4737CrossRefGoogle Scholar
  62. 62.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401PubMedCrossRefGoogle Scholar
  63. 63.
    Jensen KP (2008) Bioinorganic chemistry modeled with the TPSSh density functional. Inorg Chem 47:10357–10365PubMedCrossRefGoogle Scholar
  64. 64.
    Jensen KP, Cirera J (2009) Accurate computed enthalpies of spin crossover in iron and cobalt complexes. J Phys Chem A 113:10033–10039PubMedCrossRefGoogle Scholar
  65. 65.
    Gütlich P, McGarvey BR, Kläui W (1980) Temperature-dependent 5T2 (Oh) ⇌ 1A1 (Oh) spin equilibrium in a six-coordinate cobalt (III) complex. Investigation by phosphorus-31 NMR in solution. Inorg Chem 19:3704–3706CrossRefGoogle Scholar
  66. 66.
    Kläui W (1980) High spin-low spin equilibrium in six-coordinate cobalt(III) complexes. Inorganica Chim Acta 40:X22–X23CrossRefGoogle Scholar
  67. 67.
    Kläui W, Eberspach W, Guetlich P (1987) Spin-crossover cobalt(III) complexes: steric and electronic control of spin state. Inorg Chem 26:3977–3982CrossRefGoogle Scholar
  68. 68.
    Chen J-M, Chin Y-Y, Valldor M, Hu Z, Lee J-M, Haw S-C, Hiraoka N, Ishii H, Pao C-W, Tsuei K-D (2014) A complete high-to-low spin state transition of trivalent cobalt ion in octahedral symmetry in SrCo0.5Ru0.5O3-δ. J Am Chem Soc 136:1514–1519PubMedCrossRefGoogle Scholar
  69. 69.
    Stauber JM, Zhang S, Gvozdik N, Jiang Y, Avena L, Stevenson KJ, Cummins CC (2018) Cobalt and vanadium trimetaphosphate polyanions: synthesis, characterization, and electrochemical evaluation for non-aqueous redox-flow battery applications. J Am Chem Soc 140:538–541PubMedCrossRefGoogle Scholar
  70. 70.
    Hayami S, Nakaya M, Ohmagari H, Alao AS, Nakamura M, Ohtani R, Yamaguchi R, Kuroda-Sowa T, Clegg JK (2015) Spin-crossover behaviors in solvated cobalt (II) compounds. Dalt Trans 44:9345–9348CrossRefGoogle Scholar
  71. 71.
    Hayami S, Komatsu Y, Shimizu T, Kamihata H, Lee YH (2011) Spin-crossover in cobalt (II) compounds containing terpyridine and its derivatives. Coord Chem Rev 255:1981–1990CrossRefGoogle Scholar
  72. 72.
    Krivokapic I, Zerara M, Daku ML, Vargas A, Enachescu C, Ambrus C, Tregenna-Piggott P, Amstutz N, Krausz E, Hauser A (2007) Spin-crossover in cobalt (II) imine complexes. Coord Chem Rev 251:364–378CrossRefGoogle Scholar
  73. 73.
    Guo Y, Yang X-L, Wei R-J, Zheng L-S, Tao J (2015) Spin transition and structural transformation in a mononuclear Cobalt(II) complex. Inorg Chem 54:7670–7672PubMedCrossRefGoogle Scholar
  74. 74.
    Radon M, Drabik G (2018) Spin states and other ligand–field states of aqua complexes revisited with multireference ab initio calculations including solvation effects. J Chem Theory ComputGoogle Scholar
  75. 75.
    Nielsen MT, Moltved KA, Kepp KP (2018) Electron transfer of hydrated transition-metal ions and the electronic state of Co3+(aq). Inorg Chem 57:7914–7924PubMedCrossRefGoogle Scholar
  76. 76.
    Johnson DA, Sharpe AG (1964) Reactions of cobalt(III) compounds: magnitude of Cobalt(III)/Cobalt(II) standard potential in aqueous solution. J Chem Soc 3490–3492Google Scholar
  77. 77.
    Winkler JR, Rice SF, Gray HB (1981) On the role of the high-spin state in the water exchange reaction of Hexaaquocobalt(III). Comments Inorg Chem 1:47–51CrossRefGoogle Scholar
  78. 78.
    Navon G (1981) A search for the thermally populated high-spin excited state of hexaaquocobalt(3+) by coblt NMR. J Phys Chem 85:3547–3549CrossRefGoogle Scholar
  79. 79.
    Habib HS, Hunt JP (1966) Electron-transfer reactions between aqueous cobaltous and cobaltic ions. J Am Chem Soc 88:1668–1671CrossRefGoogle Scholar
  80. 80.
    Chou M, Creutz C, Sutin N (1977) Rate constants and activation parameters for outer-sphere electron-transfer reactions and comparisons with the predictions of Marcus theory. J Am Chem Soc 99:5615–5623CrossRefGoogle Scholar
  81. 81.
    Shatruk M, Phan H, Chrisostomo BA, Suleimenova A (2015) Symmetry-breaking structural phase transitions in spin crossover complexes. Coord Chem Rev 289–290:62–73CrossRefGoogle Scholar
  82. 82.
    Ni Z-P, Liu J-L, Hoque MN, Liu W, Li J-Y, Chen Y-C, Tong M-L (2017) Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coord Chem Rev 335:28–43CrossRefGoogle Scholar
  83. 83.
    Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Guest-dependent spin crossover in a nanoporous molecular framework material. Science (80–) 298:1762–1765Google Scholar
  84. 84.
    Struch N, Bannwarth C, Ronson TK, Lorenz Y, Mienert B, Wagner N, Engeser M, Bill E, Puttreddy R, Rissanen K (2017) An octanuclear metallosupramolecular cage designed to exhibit spin-crossover behavior. Angew Chem Int Ed 56:4930–4935CrossRefGoogle Scholar
  85. 85.
    Kumar KS, Studniarek M, Heinrich B, Arabski J, Schmerber G, Bowen M, Boukari S, Beaurepaire E, Dreiser J, Ruben M (2018) Engineering on-surface spin crossover: spin-state switching in a self-assembled film of vacuum-sublimable functional molecule. Adv Mater 30:1705416CrossRefGoogle Scholar
  86. 86.
    Zhang L, Kepp KP, Ulstrup J, Zhang J (2018) Redox potentials and electronic states of iron porphyrin IX adsorbed on single crystal gold electrode surfaces. Langmuir 34:3610–3618PubMedCrossRefGoogle Scholar
  87. 87.
    Kepenekian M, Le Guennic B, Robert V (2009) Primary role of the electrostatic contributions in a rational growth of hysteresis loop in spin-crossover Fe (II) complexes. J Am Chem Soc 131:11498–11502PubMedCrossRefGoogle Scholar
  88. 88.
    Kahn O, Martinez CJ (1998) Spin-transition polymers: from molecular materials toward memory devices. Science 279:44–48CrossRefGoogle Scholar
  89. 89.
    Cirera J, Ruiz E (2016) Theoretical modeling of the ligand-tuning effect over the transition temperature in four-coordinated FeII molecules. Inorg Chem 55:1657–1663PubMedCrossRefGoogle Scholar
  90. 90.
    Tailleur E, Marchivie M, Daro N, Chastanet G, Guionneau P (2017) Thermal spin-crossover with a large hysteresis spanning room temperature in a mononuclear complex. Chem Commun 53:4763–4766CrossRefGoogle Scholar
  91. 91.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104PubMedCrossRefGoogle Scholar
  92. 92.
    Bučko T, Hafner J, Lebègue S, Ángyán JG (2012) Spin crossover transition of Fe(phen)2(NCS)2: periodic dispersion-corrected density-functional study. Phys Chem Chem Phys 14:5389–5396PubMedCrossRefGoogle Scholar
  93. 93.
    Timken MD, Wilson SR, Hendrickson DN (1985) Dynamics of spin-state interconversion and cooperativity for ferric spin-crossover complexes in the solid state. 4. Pyruvic acid thiosemicarbazone complex. Inorg Chem 24:3450–3457CrossRefGoogle Scholar
  94. 94.
    Siig OS, Kepp KP (2018) Iron (II) and Iron (III) spin crossover: toward an optimal density functional. J Phys Chem A 122:4208–4217PubMedCrossRefGoogle Scholar
  95. 95.
    Kepp KP, Dasmeh P (2013) Effect of distal interactions on O2 binding to heme. J Phys Chem B 117:3755–3770PubMedCrossRefGoogle Scholar
  96. 96.
    Kepp KP (2017) Heme isomers substantially affect heme’s electronic structure and function. Phys Chem Chem Phys 19:22355–22362PubMedCrossRefGoogle Scholar
  97. 97.
    Pyykkö P (2012) Relativistic effects in chemistry: more common than you thought. Annu Rev Phys Chem 63:45–64PubMedCrossRefGoogle Scholar
  98. 98.
    Jensen KP, Roos BO, Ryde U (2007) Performance of density functionals for first row transition metal systems. J Chem Phys 126:14103CrossRefGoogle Scholar
  99. 99.
    Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742CrossRefGoogle Scholar
  100. 100.
    Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. I. General theory. J Chem Phys 121:2037–2047PubMedCrossRefGoogle Scholar
  101. 101.
    Moore CE (1971) Atomic energy levels. Atomic energy levels. United States Department of Commerce & National Bureau of Standards, Washington, DC, pp 56–57Google Scholar
  102. 102.
    Sousa C, Domingo A, de Graaf C (2018) Effect of second-order spin-orbit coupling on the interaction between spin states in spin-crossover systems. Chem Eur J 24:5146–5152PubMedCrossRefGoogle Scholar
  103. 103.
    de Graaf C, Sousa C (2010) Study of the light-induced spin crossover process of the [FeII(bpy)3]2+ complex. Chem Eur J 16:4550–4556PubMedCrossRefGoogle Scholar
  104. 104.
    Paulsen H, Trautwein AX (2004) Density functional theory calculations for spin crossover complexes. In: Spin crossover in transition metal compounds III. Springer, pp 197–219Google Scholar
  105. 105.
    Pyykko P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563–594CrossRefGoogle Scholar
  106. 106.
    Nakamoto T, Tan Z-C, Sorai M (2001) Heat capacity of the spin crossover complex [Fe(2-pic)3]Cl2·MeOH: a spin crossover phenomenon with weak cooperativity in the solid state. Inorg Chem 40:3805–3809PubMedCrossRefGoogle Scholar
  107. 107.
    Sorai M (2001) Calorimetric investigations of phase transitions occurring in molecule-based materials in which electrons are directly involved. Bull Chem Soc Jpn 74:2223–2253CrossRefGoogle Scholar
  108. 108.
    Addison AW, Burman S, Wahlgren CG, Rajan OA, Rowe TM, Sinn E (1987) New iron (II) spin-crossover complexes with heterocyclic amine-derived ligands and STEPS experiments on photogenerated metastable high-spin states. J Chem Soc Dalt Trans 2621–2630Google Scholar
  109. 109.
    Chum HL, Vanin JA, Holanda MID (1982) Tris (2-(aminomethyl) pyridine)iron(II): a new spin-state equilibrium in solution. Inorg Chem 21:1146–1152CrossRefGoogle Scholar
  110. 110.
    Létard J-F, Guionneau P, Rabardel L, Howard JAK, Goeta AE, Chasseau D, Kahn O (1998) Structural, magnetic, and photomagnetic studies of a mononuclear iron (II) derivative exhibiting an exceptionally abrupt spin transition. Light-induced thermal hysteresis phenomenon. Inorg Chem 37:4432–4441PubMedCrossRefGoogle Scholar
  111. 111.
    Strauß B, Linert W, Gutmann V, Jameson RF (1992) Spin-crossover complexes in solution, I. Substitutional lability of [Fe(bzimpy)2](ClO4)2. Chem Mon 123:537–546CrossRefGoogle Scholar
  112. 112.
    Boča R, Boča M, Dlháň L, Falk K, Fuess H, Haase W, Jaroščiak R, Papánková B, Renz F, Vrbová M, Werner R (2001) Strong cooperativeness in the mononuclear iron(II) derivative exhibiting an abrupt spin transition above 400 K. Inorg Chem 40:3025–3033PubMedCrossRefGoogle Scholar
  113. 113.
    Nakamoto T, Bhattacharjee A, Sorai M (2004) Cause for unusually large thermal hysteresis of spin crossover in [Fe(2-pic)3]Cl2· H2O. Bull Chem Soc Jpn 77:921–932CrossRefGoogle Scholar
  114. 114.
    Bartel M, Absmeier A, Jameson GNL, Werner F, Kato K, Takata M, Boca R, Hasegawa M, Mereiter K, Caneschi A (2007) Modification of spin crossover behavior through solvent assisted formation and solvent inclusion in a triply interpenetrating three-dimensional network. Inorg Chem 46:4220–4229PubMedCrossRefGoogle Scholar
  115. 115.
    Lemercier G, Bousseksou A, Verelst M, Varret F, Tuchagues JP (1995) Dynamic spin-crossover in [FeII(TRIM)2]Cl2 investigated by Mössbauer spectroscopy and magnetic measurements. J Magn Magn Mater 150:227–230CrossRefGoogle Scholar
  116. 116.
    Dose EV, Murphy KMM, Wilson LJ (1976) Synthesis and spin-state studies in solution of γ-substituted tris (β-diketonato) iron(III) complexes and their spin-equilibrium. β-ketoimine analogues derived from triethylenetetramine. Inorg Chem 15:2622–2630CrossRefGoogle Scholar
  117. 117.
    Ye S, Neese F (2010) Accurate modeling of spin-state energetics in spin-crossover systems with modern density functional theory. Inorg Chem 49:772–774PubMedCrossRefGoogle Scholar
  118. 118.
    Conradie J, Ghosh A (2007) DFT calculations on the spin-crossover complex Fe (salen)(NO): a quest for the best functional. J Phys Chem B 111:12621–12624PubMedCrossRefGoogle Scholar
  119. 119.
    Li Z, Dai J, Shiota Y, Yoshizawa K, Kanegawa S, Sato O (2013) Multi-step spin crossover accompanied by symmetry breaking in an FeIII complex: crystallographic evidence and DFT studies. Chem Eur J 19:12948–12952PubMedCrossRefGoogle Scholar
  120. 120.
    de Visser SP (2005) What affects the quartet-doublet energy splitting in peroxidase enzymes? J Phys Chem A 109:11050–11057PubMedCrossRefGoogle Scholar
  121. 121.
    Franzen S (2002) Spin-dependent mechanism for diatomic ligand binding to heme. Proc Natl Acad Sci USA 99:16754–16759PubMedCrossRefGoogle Scholar
  122. 122.
    Bousseksou A, McGarvey JJ, Varret F, Real JA, Tuchagues J-P, Dennis AC, Boillot ML (2000) Raman spectroscopy of the high-and low-spin states of the spin crossover complex Fe(phen)2(NCS)2: an initial approach to estimation of vibrational contributions to the associated entropy change. Chem Phys Lett 318:409–416CrossRefGoogle Scholar
  123. 123.
    Molnár G, Niel V, Gaspar AB, Real J-A, Zwick A, Bousseksou A, McGarvey JJ (2002) Vibrational spectroscopy of cyanide-bridged, iron (II) spin-crossover coordination polymers: estimation of vibrational contributions to the entropy change associated with the spin transition. J Phys Chem B 106:9701–9707CrossRefGoogle Scholar
  124. 124.
    Ronayne KL, Paulsen H, Höfer A, Dennis AC, Wolny JA, Chumakov AI, Schünemann V, Winkler H, Spiering H, Bousseksou A (2006) Vibrational spectrum of the spin crossover complex [Fe(phen)2(NCS)2] studied by IR and Raman spectroscopy, nuclear inelastic scattering and DFT calculations. Phys Chem Chem Phys 8:4685–4693PubMedCrossRefGoogle Scholar
  125. 125.
    Brehm G, Reiher M, Schneider S (2002) Estimation of the vibrational contribution to the entropy change associated with the low-to high-spin transition in Fe(phen)2(NCS)2 complexes: results obtained by IR and Raman spectroscopy and DFT calculations. J Phys Chem A 106:12024–12034CrossRefGoogle Scholar
  126. 126.
    Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  127. 127.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  128. 128.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  129. 129.
    Reiher M (2002) Theoretical study of the Fe(phen)2(NCS)2 spin-crossover complex with reparametrized density functionals. Inorg Chem 41:6928–6935PubMedCrossRefGoogle Scholar
  130. 130.
    Cirera J, Paesani F (2012) Theoretical prediction of spin-crossover temperatures in ligand-driven light-induced spin change systems. Inorg Chem 51:8194–8201PubMedCrossRefGoogle Scholar
  131. 131.
    Gani TZH, Kulik HJ (2017) Unifying exchange sensitivity in transition-metal spin-state ordering and catalysis through bond valence metrics. J Chem Theory Comput 13:5443–5457PubMedCrossRefGoogle Scholar
  132. 132.
    Swart M, Groenhof AR, Ehlers AW, Lammertsma K (2004) Validation of exchange-correlation functionals for spin states of iron complexes. J Phys Chem A 108:5479–5483CrossRefGoogle Scholar
  133. 133.
    Harvey JN (2004) DFT computation of relative spin-state energetics of transition metal compounds. In: Principles and applications of density functional theory in inorganic chemistry I. Springer, pp 151–184Google Scholar
  134. 134.
    Ghosh A (2006) Transition metal spin state energetics and noninnocent systems: challenges for DFT in the bioinorganic arena. J Biol Inorg Chem 11:712–724PubMedCrossRefGoogle Scholar
  135. 135.
    Vancoillie S, Zhao H, Radon M, Pierloot K (2010) Performance of CASPT2 and DFT for relative spin-state energetics of heme models. J Chem Theory Comput 6:576–582PubMedCrossRefGoogle Scholar
  136. 136.
    Hughes TF, Friesner RA (2011) Correcting systematic errors in DFT spin-splitting energetics for transition metal complexes. J Chem Theory Comput 7:19–32PubMedCrossRefGoogle Scholar
  137. 137.
    Pinter B, Chankisjijev A, Geerlings P, Harvey JN, De Proft F (2018) Conceptual insights into DFT spin-state energetics of octahedral transition-metal complexes through a density difference analysis. Chem Eur J 24:5281–5292PubMedCrossRefGoogle Scholar
  138. 138.
    Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:34108CrossRefGoogle Scholar
  139. 139.
    Cohen AJ, Handy NC (2000) Assessment of exchange correlation functionals. Chem Phys Lett 316:160–166CrossRefGoogle Scholar
  140. 140.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865PubMedCrossRefGoogle Scholar
  141. 141.
    Handy NC, Cohen AJ (2001) Left-right correlation energy. Mol Phys 99:403–412CrossRefGoogle Scholar
  142. 142.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  143. 143.
    Swart M (2008) Accurate spin-state energies for iron complexes. J Chem Theory Comput 4:2057–2066PubMedCrossRefGoogle Scholar
  144. 144.
    Swart M, Solà M, Bickelhaupt FM (2009) A new all-round density functional based on spin states and SN2 barriers. J Chem Phys 131:94103CrossRefGoogle Scholar
  145. 145.
    Jensen K, Ryde U (2003) Theoretical prediction of the Co-C bond strength in cobalamins. J Phys Chem A 155:7539–7545CrossRefGoogle Scholar
  146. 146.
    Kepp KP (2017) Trends in strong chemical bonding in C2, CN, CN, CO, N2, NO, NO+, and O2. J Phys Chem A 121:9092–9098PubMedCrossRefGoogle Scholar
  147. 147.
    Xu X, Zhang W, Tang M, Truhlar DG (2015) Do practical standard coupled cluster calculations agree better than Kohn-Sham calculations with currently available functionals when compared to the best available experimental data for dissociation energies of bonds to 3d transition metals? J Chem Theory Comput 11:2036–2052PubMedCrossRefGoogle Scholar
  148. 148.
    Ioannidis EI, Kulik HJ (2017) Ligand-field-dependent behavior of meta-GGA exchange in transition-metal complex spin-state ordering. J Phys Chem A 121:874–884PubMedCrossRefGoogle Scholar
  149. 149.
    Ghigo G, Roos BO, Malmqvist P-Å (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149CrossRefGoogle Scholar
  150. 150.
    Jensen KP, Roos B, Ryde U (2005) O2-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods. J Inorg Biochem 99:45–54PubMedCrossRefGoogle Scholar
  151. 151.
    Phung QM, Feldt M, Harvey JN, Pierloot K (2018) Toward highly accurate spin state energetics in first-row transition metal complexes: a combined CASPT2/CC approach. J Chem Theory Comput 14:2446–2455PubMedCrossRefGoogle Scholar
  152. 152.
    Pierloot K, Vancoillie S (2006) Relative energy of the high-(5T2g) and low-(1A1g) spin states of [Fe(H2O)6]2+,[Fe(NH3)6]2+, and [Fe(bpy)3]2+: CASPT2 versus density functional theory. J Chem Phys 125:124303PubMedCrossRefGoogle Scholar
  153. 153.
    Song S, Kim M-C, Sim E, Benali A, Heinonen O, Burke K (2018) Benchmarks and reliable DFT results for spin gaps of small ligand Fe(II) complexes. J Chem Theory Comput 14:2304–2311PubMedCrossRefGoogle Scholar
  154. 154.
    Lawson Daku LM, Aquilante F, Robinson TW, Hauser A (2012) Accurate spin-state energetics of transition metal complexes. 1. CCSD(T), CASPT2, and DFT study of [M(NCH)6]2+ (M = Fe, Co). J Chem Theory Comput 8:4216–4231PubMedCrossRefGoogle Scholar
  155. 155.
    Kepenekian M, Robert V, Le Guennic B, De Graaf C (2009) Energetics of [Fe(NCH)6]2+ via CASPT2 calculations: a spin-crossover perspective. J Comput Chem 30:2327–2333PubMedGoogle Scholar
  156. 156.
    Fumanal M, Wagner LK, Sanvito S, Droghetti A (2016) Diffusion Monte Carlo perspective on the spin-state energetics of [Fe(NCH)6]2+. J Chem Theory Comput 12:4233–4241PubMedCrossRefGoogle Scholar
  157. 157.
    Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos Trans R Soc Lond A Math Phys Eng Sci 372:20120476Google Scholar
  158. 158.
    Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA (2017) Density functional theory is straying from the path toward the exact functional. Science 355:49–52PubMedCrossRefGoogle Scholar
  159. 159.
    Kepp KP (2017) Comment on “Density functional theory is straying from the path toward the exact functional”. Science 356:496–497PubMedCrossRefGoogle Scholar
  160. 160.
    Isley WC III, Zarra S, Carlson RK, Bilbeisi RA, Ronson TK, Nitschke JR, Gagliardi L, Cramer CJ (2014) Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host–guest systems. Phys Chem Chem Phys 16:10620–10628PubMedCrossRefGoogle Scholar
  161. 161.
    Ioannidis EI, Kulik HJ (2015) Towards quantifying the role of exact exchange in predictions of transition metal complex properties. J Chem Phys 143:34104CrossRefGoogle Scholar
  162. 162.
    Coskun D, Jerome SV, Friesner RA (2016) Evaluation of the performance of the B3LYP, PBE0, and M06 DFT functionals, and DBLOC-corrected versions, in the calculation of redox potentials and spin splittings for transition metal containing systems. J Chem Theory Comput 12:1121–1128PubMedCrossRefGoogle Scholar
  163. 163.
    Verma P, Varga Z, Klein JEMN, Cramer CJ, Que L, Truhlar DG (2017) Assessment of electronic structure methods for the determination of the ground spin states of Fe(II), Fe(III) and Fe(IV) complexes. Phys Chem Chem Phys 19:13049–13069PubMedCrossRefGoogle Scholar
  164. 164.
    Perdew JP, Tao J, Staroverov VN, Scuseria GE (2004) Meta-generalized gradient approximation: explanation of a realistic nonempirical density functional. J Chem Phys 120Google Scholar
  165. 165.
    Colle R, Salvetti O (1975) Approximate calculation of the correlation energy for the closed shells. Theor Chim Acta 37:329–334CrossRefGoogle Scholar
  166. 166.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  167. 167.
    Prokopiou G, Kronik L (2018) Spin-state energetics of Fe complexes from an optimally tuned range-separated hybrid functional. Chem Eur J 24:5173–5182PubMedCrossRefGoogle Scholar
  168. 168.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DTU Chemistry, Technical University of DenmarkKongens LyngbyDenmark

Personalised recommendations