Skip to main content

Shadow Removal in High-Resolution Satellite Images Using Conditional Generative Adversarial Networks

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2018)

Abstract

In satellite image processing, obscure zones that were affected by shadows are normally discarded from further processing. Nevertheless, for specific applications, such as surveillance, it is desirable to remove shadows despite the fact that reconstructed zones do not necessarily have real reflectance values. In that sense, we propose a shadow removal method in high-resolution satellite images using conditional Generative Adversarial Networks (cGANs). The generator network is trained to produce shadow-free RGB images with condition on a satellite image patch altered with artificial shadows and concatenated with its respective binary shadow mask, while the discriminator is adversely trained to discern if a given shadow-free image comes from the generator or if it is an original RGB image without artificial alteration. The method is tested in the proposed dataset achieving an error ratio comparable with the state of the art. Finally, we confirm the feasibility of the proposed network using real shadowed images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, B., Ono, A., Muramatsu, K., Fujiwara, N.: Automated detection and removal of clouds and their shadows from landsat TM images. IEICE Trans. Inf. Syst. E82–D2, 453–460 (1999)

    Google Scholar 

  2. Sah, A.K., Sah, B.P., Honji, K., Kubo, N., Senthil, S.: Semi-automated cloud/shadow removal and land cover change detection using satellite imagery. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 39–B7, 335–340 (2012)

    Article  Google Scholar 

  3. Candra, D.S., Phinn, S., Scarth, P.: Cloud and cloud shadow removal of landsat 8 images using Multitemporal Cloud Removal method. In: 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA (2017)

    Google Scholar 

  4. Murali, S., Govindan, V.K.: Shadow detection and removal from a single image using LAB color space. Cybern. Inf. Technol. 13(1), 95–103 (2013)

    MathSciNet  Google Scholar 

  5. Zigh, E., Belbachir, M.F., Kadiri, M., Djebbouri, M., Kouninef, B.: New shadow detection and removal approach to improve neural stereo correspondence of dense urban VHR remote sensing images. Eur. J. Remote. Sens. 48(1), 447–463 (2015)

    Article  Google Scholar 

  6. Deb, K., Suny, A.H.: Shadow detection and removal based on YCbCr color space. Smart Comput. Rev. 4(1), 23–33 (2014)

    Google Scholar 

  7. Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. TPAMI 28(1), 59–68 (2006)

    Article  Google Scholar 

  8. Liu, F., Gleicher, M.: Texture-consistent shadow removal. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 437–450. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_32

    Chapter  Google Scholar 

  9. George, G.E.: Cloud shadow detection and removal from aerial photo mosaics using light detection and ranging (LIDAR) reflectance images. Ph.D. thesis, The University of Southern Mississippi, Mississippi, USA (1996)

    Google Scholar 

  10. Khan, S.H., Bennamoun, M., Sohel, F., Togneri, R.: Automatic shadow detection and removal from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 6(1), 431–446 (2015)

    Google Scholar 

  11. Kwatra, V., Han, M., Dai, S.: Shadow removal for aerial imagery by information theoretic intrinsic image analysis. In: IEEE International Conference on Computational Photography, pp. 1–8. IEEE, Seattle (2012)

    Google Scholar 

  12. Gong, H., Cosker, D.: Interactive shadow removal and ground truth for variable scene categories. In: Proceedings of the British Machine Vision Conference. BMVA Press, Nottingham (2014)

    Google Scholar 

  13. ShadowfreePeru Dataset. http://didt.inictel-uni.edu.pe/dataset/datasetshadowcorrection.hdf5

  14. Perlin, K.: Improving noise. ACM Trans. Graph. 21(3), 681–682 (2002)

    Article  Google Scholar 

  15. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu (2017)

    Google Scholar 

  17. Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via generative adversarial networks. arXiv preprint arXiv:1702.06674v2 (2017)

    Chapter  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diego (2015)

    Google Scholar 

  20. Morales, G., Arteaga, D., Huamán, S., Telles, J.: Shadow detection in high-resolution multispectral satellite imagery using generative adversarial networks. In: 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1–4. IEEE, Lima (2018). https://doi.org/10.1109/INTERCON.2018.8526416

Download references

Acknowledgement

The authors would like to thank the National Commission for Aerospace Research and Development (CONIDA) and the National Institute of Research and Training in Telecommunications of the National University of Engineering (INICTEL-UNI) for the support provided. The training of all the networks was carried out by the High Performance Computational Center of the Peruvian Amazon Research Institute (IIAP). For more information please visit http://iiap.org.pe/manati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morales, G., Huamán, S.G., Telles, J. (2019). Shadow Removal in High-Resolution Satellite Images Using Conditional Generative Adversarial Networks. In: Lossio-Ventura, J., Muñante, D., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2018. Communications in Computer and Information Science, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-030-11680-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11680-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11679-8

  • Online ISBN: 978-3-030-11680-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics