Skip to main content

Benchmark Study of Measurements of Hydrogen Diffusion in Metals

  • Chapter
  • First Online:
Dynamical Processes in Generalized Continua and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 103))

Abstract

The chapter is concerned with the model of multichannel diffusion of hydrogen in a solid. The model is developed for analysis of diffusion of small, so-called natural, hydrogen concentrations, describes experiments for the model verification, and presents data on the hydrogen binding energies in a solid obtained by identifying the model parameters by means of the experimental data. A critical analysis of some disadvantages of the widely known method of thermo-desorption spectra is provided. The energy spectra of hydrogen obtained by the latter method and the multichannel diffusion model are compared and discussed. 15 years ago we first introduced Dmitry Indeitsev to the idea of applying the model of multichannel diffusion to determine the hydrogen binding energy in a solid. He enthusiastically supported our activity, both by discussing the results and participating in projects by Russian Foundation for Basic Research. Our experimental results served as a basis for the two-continuum model proposed by him. The authors express deep gratitude to him for the extremely useful and friendly participation in the development of our ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aluminum and aluminum alloys. Methods for determination of hydrogen in solid metal by vacuum heating (in Russian). GOST (State Standard) 21132.198. Izdatelstvo Standartov, Moscow (2000)

    Google Scholar 

  2. Anderl, R., Causey, R., Davis, J., Doerner, R., Federici, G., Haasz, A., Longhurst, G., Wampler, W., Wilson, K.: Hydrogen isotope retention in beryllium for tokamak plasma-facing applications. J. Nucl. Mater. 273(1), 1–26 (1999)

    Google Scholar 

  3. Asahi, H., Hirakami, D., Yamasaki, S.: Hydrogen trapping behavior in vanadium-added steel. ISIJ Int. 43(4), 527–533 (2003)

    Google Scholar 

  4. Barel, E., Hamu, G.B., Eliezer, D., Wagner, L.: The effect of heat treatment and HCF performance on hydrogen trapping mechanism in timetal LCB alloy. J. Alloy. Compd. 468(12), 77–86 (2009)

    Google Scholar 

  5. Belyaev, A., Polyanskiy, A., Polyanskiy, V., Yakovlev, Y.: Parametric instability in cyclic loading as the cause of fracture of hydrogenous materials. Mech. Solids 47(5), 533–537 (2012)

    Google Scholar 

  6. Belyaev, A.K., Kudinova, N.R., Polyanskiy, V.A., Yakovlev, Y.A.: The description of deformation and destruction of materials containing hydrogen by means of rheological model. St. Petersburg Polytech. Univ. J. Phys. Math. 1(3), 305–314 (2015)

    Google Scholar 

  7. Belyaev, A.K., Polyanskiy, V.A., Yakovlev, Y.A.: Stresses in a pipeline affected by hydrogen. Acta Mech. 223(8), 1611–1619 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Belyaev, A.K., Polyanskiy, V.A., Yakovlev, Y.A.: Hydrogen as an indicator of high-cycle fatigue. Procedia IUTAM 13, 138–143 (2015). Dynamical Analysis of multibody systems with design uncertainties

    Google Scholar 

  9. Belyaev, A.K., Polyanskiy, V.A., Yakovlev, Y.A.: Rheological model of materials with defects containing hydrogen. Key Eng. Mater. 651–653, 604–609 (2015)

    Google Scholar 

  10. Causey, R.A.: Hydrogen isotope retention and recycling in fusion reactor plasma-facing components. J. Nucl. Mater. 300(23), 91–117 (2002)

    Google Scholar 

  11. Depover, T., Monbaliu, O., Wallaert, E., Verbeken, K.: Effect of Ti, Mo and Cr based precipitates on the hydrogen trapping and embrittlement of Fe–C–X Q&T alloys. Int. J. Hydrog. Energy 40(47), 16977–16984 (2015). Special issue on 1st international conference on hydrogen storage, embrittlement and applications (Hy-SEA 2014), Rio de Janeiro, Brazil, 26–30 October 2014

    Google Scholar 

  12. Dmytrakh, I., Smiyan, O., Syrotyuk, A., Bilyy, O.: Relationship between fatigue crack growth behaviour and local hydrogen concentration near crack tip in pipeline steel. Int. J. Fatigue 50(0), 26–32 (2013). Recent progress in the understanding of fatigue crack propagation

    Google Scholar 

  13. Doshida, T., Takai, K.: Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. Acta Mater. 79, 93–107 (2014)

    Google Scholar 

  14. Eliezer, D., Tal-Gutelmacher, E., Cross, C., Boellinghaus, T.: Hydrogen absorption and desorption in a duplex-annealed TI6AL4V alloy during exposure to different hydrogen-containing environments. Mater. Sci. Eng. A 433(12), 298–304 (2006)

    Google Scholar 

  15. Eliezer, D., Tal-Gutelmacher, E., Cross, C., Boellinghaus, T.: Hydrogen trapping in \(\beta \)-21s titanium alloy. Mater. Sci. Eng. A 421(12), 200–207 (2006). Internal stress and thermo-mechanical behavior in multi-component materials systems, TMS Annual Meeting (2004)

    Google Scholar 

  16. Eliezer, D., Tal-Gutelmacher, E., Cross, C., Boellinghaus, T.: Irreversible hydrogen trapping in welded beta-21s titanium alloy. In: Gdoutos, E. (ed.) Fracture of Nano and Engineering Materials and Structures, pp. 985–986. Springer, Netherlands (2006)

    Google Scholar 

  17. Garcia, D.C.S., Carvalho, R.N., Lins, V.F.C., Rezende, D.M., Santos, D.S.D.: Influence of microstructure in the hydrogen permeation in martensitic-ferritic stainless steel. Int. J. Hydrog. Energy 40(47), 17102–17109 (2015). Special issue on 1st international conference on hydrogen storage, embrittlement and applications (Hy-SEA 2014), Rio de Janeiro, Brazil, 26–30 October 2014

    Google Scholar 

  18. Garet, M., Brass, A.M., Haut, C., Guttierez-Solana, F.: Hydrogen trapping on non metallic inclusions in Cr-Mo low alloy steels. Corros. Sci. 40(7), 1073–1086 (1998)

    Google Scholar 

  19. Gorsky, W.: Theorie der elastischen nachwirkung in ungeordneten mischkristallen (elastische nachwirkung zweiter art.). Physikalische Zeitschrift der Sowjetunion 8, 457–471 (1935)

    Google Scholar 

  20. Gorsky, W.: Theorie der elastischen nachwirkung in ungeordneten mischkristallen von cuau. Physikalische Zeitschrift der Sowjetunion 8, 443–456 (1935)

    Google Scholar 

  21. Hagi, H.: Diffusion coefficient of hydrogen in iron without trapping by dislocations and impurities. Mater. Trans. JIM 35(2), 112–117 (1994)

    Google Scholar 

  22. Hagi, H., Hayashi, Y.: Effect of dislocation trapping on hydrogen and deuterium diffusion in iron. Trans. Jpn. Inst. Metals 28(5), 368–374 (1987)

    Google Scholar 

  23. Hirth, J.: Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11(6), 861–890 (1980)

    Google Scholar 

  24. Hno, M.: Influence of sulfur content on the hydrogen-induced fracture in linepipe steels. Metall. Trans. A 10(11), 1691–1698 (1979)

    Google Scholar 

  25. Hodille, E.A., Begrambekov, L.B., Pascal, J.Y., Saidi, O., Layet, J.M., Pegourie, B., Grisolia, C.: Hydrogen trapping in carbon film: from laboratories studies to tokamak applications. Int. J. Hydrog. Energy 39(35), 20054–20061 (2014)

    Google Scholar 

  26. Hultquist, G., Graham, M.J., Smialek, J.L., Jonsson, B.: Hydrogen in metals studied by thermal desorption spectroscopy (TDS). Corros. Sci. 93, 324–326 (2015)

    Google Scholar 

  27. Kimura, Y., Sakai, Y., Hara, T., Belyakov, A., Tsuzaki, K.: Hydrogen induced delayed fracture of ultrafine grained 0.6 with dispersed oxide particles. Scr. Mater. 49(11), 1111–1116 (2003)

    Google Scholar 

  28. Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    Google Scholar 

  29. Konar, J., Banerjee, N.: Vacuum heating hydrogen determination in aluminium and aluminium alloys. NML Tech. J. 16(1–2), 18–19 (1974)

    Google Scholar 

  30. Konopel’ko, L.A., Polyanskii, A.M., Polyanskii, V.A., Yakovlev, Y.A.: New metrological support for measurements of the concentration of hydrogen in solid samples. Meas. Tech. 60(12), 1222–1227 (2018)

    Google Scholar 

  31. Kuduzovic, A., Poletti, M.C., Sommitsch, C., Domankova, M., Mitsche, S., Kienreich, R.: Investigations into the delayed fracture susceptibility of 34crnimo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners. Mater. Sci. Eng. A 590, 66–73 (2014)

    Google Scholar 

  32. Leeuwen, H.V.: The kinetics of hydrogen embrittlement: a quantitative diffusion model. Eng. Fract. Mech. 6(1), 141–161 (1974)

    Google Scholar 

  33. Legrand, E., Oudriss, A., Savall, C., Bouhattate, J., Feaugas, X.: Towards a better understanding of hydrogen measurements obtained by thermal desorption spectroscopy using FEM modeling. Int. J. Hydrog. Energy 40(6), 2871–2881 (2015)

    Google Scholar 

  34. Liu, Y., Wang, M., Liu, G.: Hydrogen trapping in high strength martensitic steel after austenitized at different temperatures. Int. J. Hydrog. Energy 38(33), 14364–14368 (2013)

    Google Scholar 

  35. Martinez-Madrid, M., Chan, S.L.I., Charles, J.A., Lopez, J.A., Castano, V.: Effect of grain size and second phase particles on the hydrogen occlusivity of iron and steels. Mater. Res. Innov. 3(5), 263–270 (2000)

    Google Scholar 

  36. Matsuo, T., Yamabe, J., Matsuoka, S.: Effects of hydrogen on tensile properties and fracture surface morphologies of type 316L stainless steel. Int. J. Hydrog. Energy 39(7), 3542–3551 (2014)

    Google Scholar 

  37. Mohtadi-Bonab, M., Szpunar, J., Razavi-Tousi, S.: A comparative study of hydrogen induced cracking behavior in API 5l X60 and X70 pipeline steels. Eng. Fail. Anal. 33, 163–175 (2013)

    Google Scholar 

  38. Neklyudov, I.M., Morozov, O.M., Kulish, V.G., Zhurba, V.I., Khaimovich, P.A., Galitskiy, A.G.: Hydrogen diagnostics of structural states 18Cr10NiTi steel. Int. J. Hydrog. Energy 36(1), 1192–1195 (2011). 11th International conference: hydrogen materials science and chemistry of carbon nanomaterials

    Google Scholar 

  39. Nickel, N.H., Brendel, K., Saleh, R.: Laser crystallization of hydrogenated amorphous silicon. Phys. Status Solidi (c) 1(5), 1154–1168 (2004)

    Google Scholar 

  40. Nie, Y., Kimura, Y., Inoue, T., Yin, F., Akiyama, E., Tsuzaki, K.: Hydrogen embrittlement of a 1500-mpa tensile strength level steel with an ultrafine elongated grain structure. Metall. Mater. Trans. A 43(5), 1670–1687 (2012)

    Google Scholar 

  41. Olson, D.L., Maroef, I., Lensing, C., Smith, R.D., Wang, W.W., Liu, S., Wildeman, T., Eberhart, M.: Hydrogen management in high strength steel weldments. In: Davidson, J.L., Olson, D.L. (eds.) Proceedings of the Joint Seminar, Melbourne, 23\(^{th}\) October 1996, Organising Committee of the Joint Seminar on behalf of Defence Science and Technology Organisation and Welding Technology Institute of Australia, pp. 1–19 (1996)

    Google Scholar 

  42. Padhy, G., Ramasubbu, V., Murugesan, N., Ramesh, C., Parvathavarthini, N., Albert, S.: Determination of apparent diffusivity of hydrogen in 9cr-1movnbn steel using hot extraction-pemhs technique. Int. J. Hydrog. Energy 38(25), 10683–10693 (2013)

    Google Scholar 

  43. Padhy, G.K., Ramasubbu, V., Parvathavarthini, N., Wu, C.S., Albert, S.K.: Influence of temperature and alloying on the apparent diffusivity of hydrogen in high strength steel. Int. J. Hydrog. Energy 40(20), 6714–6725 (2015)

    Google Scholar 

  44. Park, G.T., Koh, S.U., Jung, H.G., Kim, K.Y.: Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel. Corros. Sci. 50(7), 1865–1871 (2008)

    Google Scholar 

  45. Park, I.-J., Jo, S.Y., Kang, M., Lee, S.-M., Lee, Y.-K.: The effect of Ti precipitates on hydrogen embrittlement of Fe-18Mn-0.6C-2Al-xTi twinning-induced plasticity steel. Corros. Sci. 89(0), 38–45 (2014)

    Google Scholar 

  46. Petushkov, E., Tserfas, A., Maksumov, T.: Determination of hydrogen in molybdenum by a diffusion-manometric method. In: Arifov, U. (ed.) Secondary Emission and Structural Properties of Solids, pp. 107–109. Springer, US (1971)

    Google Scholar 

  47. Phaniraj, M.P., Kim, H.-J., Suh, J.-Y., Shim, J.-H., Park, S.-J., Lee, T.-H.: Hydrogen embrittlement in high interstitial alloyed 18Cr10Mn austenitic stainless steels. Int. J. Hydrog. Energy 40(39), 13635–13642 (2015)

    Google Scholar 

  48. Polyanskiy, A., Polyanskiy, V., Yakovlev, Y.A.: Experimental determination of parameters of multichannel hydrogen diffusion in solid probe. Int. J. Hydrog. Energy 39(30), 17381–17390 (2014)

    Google Scholar 

  49. Polyanskiy, A.M., Popov-Diumin, D.B., Polyanskiy, V.A.: Determination of hydrogen binding energy in various materials by means of absolute measurements of its concentration in solid probe. In: Veziroglu, T., Zaginaichenko, S., Schur, D., Baranowski, B., Shpak, A., Skorokhod, V., Kale, A. (eds.) Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology, pp. 681–692. Springer, Netherlands (2007)

    Google Scholar 

  50. Pressouyre, G.M.: A classification of hydrogen traps in steel. Metall. Trans. A 10(10), 1571–1573 (1979)

    Google Scholar 

  51. Ross, D.: Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80(10), 1084–1089 (2006). The world energy crisis: some vacuum-based solutions

    Google Scholar 

  52. Sayi, Y., Ramakumar, K., Prasad, R., Yadav, C., Shankaran, P., Chhapru, G., Jain, H.: Determination of H2 and D2 content in metals and alloys using hot vacuum extraction. J. Radioanal. Nucl. Chem. 230(1–2), 5–9 (1998)

    Google Scholar 

  53. Shewmon, P.G.: Hydrogen attack of carbon steel. Metall. Trans. A 7(2), 279–286 (1976)

    Google Scholar 

  54. So, K.H., Kim, J.S., Chun, Y.S., Park, K.-T., Lee, Y.-K., Lee, C.S.: Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe18Mn1.5Al0.6C TWIP steel. ISIJ Int. 49(12), 1952–1959 (2009)

    Google Scholar 

  55. Sofronis, P., Liang, Y., Aravas, N.: Hydrogen induced shear localization of the plastic flow in metals and alloys. Eur. J. Mech.-A/Solids 20(6), 857–872 (2001)

    MATH  Google Scholar 

  56. Song, E.J., Suh, D.-W., Bhadeshia, H.: Theory for hydrogen desorption in ferritic steel. Comput. Mater. Sci. 79, 36–44 (2013)

    Google Scholar 

  57. Suwarno, S., Solberg, J.K., Maehlen, J.P., Denys, R.V., Krogh, B., Ochoa-Fernandez, E., Borresen, B.T., Rytter, E., Gabis, I.E., Yartys, V.A.: Non-isothermal kinetics and in situ SR XRD studies of hydrogen desorption from dihydrides of binary Ti-V alloys. Int. J. Hydrog. Energy 38(34), 14704–14714 (2013)

    Google Scholar 

  58. Taha, A., Sofronis, P.: A micromechanics approach to the study of hydrogen transport and embrittlement. Eng. Fract. Mech. 68(6), 803–837 (2001)

    Google Scholar 

  59. Takasawa, K., Ishigaki, R., Wada, Y., Kayano, R.: Absorption of hydrogen in high-strength low-alloy steel during tensile deformation in gaseous hydrogen. ISIJ Int. 50(10), 1496–1502 (2010)

    Google Scholar 

  60. Tarzimoghadam, Z., Rohwerder, M., Merzlikin, S.V., Bashir, A., Yedra, L., Eswara, S., Ponge, D., Raabe, D.: Multi-scale and spatially resolved hydrogen mapping in a ninb model alloy reveals the role of the \(\delta \) phase in hydrogen embrittlement of alloy 718. Acta Mater. 109, 69–81 (2016)

    Google Scholar 

  61. Verbeken, K.: 2 - Analysing hydrogen in metals: bulk thermal desorption spectroscopy (TDS) methods. In: Gangloff, R.P., Somerday, B.P. (eds.) Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Woodhead Publishing Series in Metals and Surface Engineering, vol. 1, pp. 27–55. Woodhead Publishing, Elsevier (2012)

    Google Scholar 

  62. Wang, M., Akiyama, E., Tsuzaki, K.: Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation. Corros. Sci. 48(8), 2189–2202 (2006)

    Google Scholar 

  63. Wei, F.G., Tsuzaki, K.: Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall. Mater. Trans. A 37(2), 331–353 (2006)

    Google Scholar 

  64. Williamson, G.K., Smallman, R.E.: III. Dislocation densities in some annealed and cold-worked metals from measurements on the X–ray debye-scherrer spectrum. Philos. Mag. 1(1), 34–46 (1956)

    Google Scholar 

  65. Zan, N., Ding, H., Guo, X., Tang, Z., Bleck, W.: Effects of grain size on hydrogen embrittlement in a Fe–22Mn–0.6C TWIP steel. Int. J. Hydrog. Energy 40(33), 10687–10696 (2015)

    Google Scholar 

  66. Zheng, J., Liu, X., Xu, P., Liu, P., Zhao, Y., Yang, J.: Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrog. Energy 37(1), 1048–1057 (2012). 11th China hydrogen energy conference

    Google Scholar 

Download references

Acknowledgements

The research is carried out under the financial support by Russian Science Foundation, grant 18-19-00160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Polyanskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arseniev, D.G., Belyaev, A., Polyanskiy, A.M., Polyanskiy, V.A., Yakovlev, Y.A. (2019). Benchmark Study of Measurements of Hydrogen Diffusion in Metals. In: Altenbach, H., Belyaev, A., Eremeyev, V., Krivtsov, A., Porubov, A. (eds) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-11665-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11665-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11664-4

  • Online ISBN: 978-3-030-11665-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics