Skip to main content

Numerical Modelling of Two-Phase Piezocomposites with Interface Mechanical Anisotropic Effects

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 103))

Abstract

The present paper considers the homogenization problems for two-phase piezocomposite materials with random inclusions and with taking into account the mechanical imperfect interface boundaries. The accepted constitutive equations on the interface correspond to the Gurtin–Murdoch model for surface stresses and give a significant effect only for nanosized inclusions. To find the effective material properties, an integrated approach was used, based on the effective moduli method, on the modelling of representative volume element and on the finite element method. A set of boundary value problems was presented, which allow one to determine a complete collection of effective stiffness moduli, piezomoduli, and dielectric permittivities for a piezocomposite of arbitrary anisotropy class. The numerical realization was carried out in the ANSYS finite element package, which was used for representative volume modelling and for computation of the effective properties for piezocomposite material. The representative volume consisted of a regular mesh of cubic piezoelectric finite elements with the material properties of two phases. The interphase boundaries were covered with anisotropic elastic membrane elements that simulated surface stresses. As an example, the homogenization problem for one ceramomatrix piezocomposite with nanosized inclusions was solved numerically. It was noted that the interface stresses can essentially increase the effective stiffness moduli. However, the mechanical interface had a small influence on the effective piezomoduli and on the dielectric permittivities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bobrov, S.V., Nasedkin, A.V., Rybjanets, A.N.: Finite element modeling of effective moduli of porous and polycrystalline composite piezoceramics. In: Topping, B.H.V., Montero, G., Montenegro, R. (eds.) Proceedings of VIII International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK, Paper 107 (2006)

    Google Scholar 

  2. Chatzigeorgiou, G., Javili, A., Steinmann, P.: Multiscale modelling for composites with energetic interfaces at the micro-or nanoscale. Math. Mech. Solids 20, 1130–1145 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chen, T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)

    Article  Google Scholar 

  4. Dai, S., Gharbi, M., Sharma, P., Park, H.S.: Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. J. Appl. Phys. 110, 104305-1–104305-7 (2011)

    Google Scholar 

  5. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008)

    Google Scholar 

  6. Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater. 54, 2983–2990 (2006)

    Article  Google Scholar 

  7. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  Google Scholar 

  8. Eremeyev, V., Morozov, N.: The effective stiffness of a nanoporous rod. Dokl. Phys. 55(6), 279–282 (2010)

    Article  Google Scholar 

  9. Eremeyev, V.A., Nasedkin, A.V.: Mathematical models and finite element approaches for nanosized piezoelectric bodies with uncoulped and coupled surface effects. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Advanced Structured Materials, vol. 59, pp. 1–18. Springer, Singapore (2017)

    Google Scholar 

  10. Gu, S.-T., He, Q.C., Pensée, V.: Homogenization of fibrous piezoelectric composites with general imperfect interfaces under anti-plane mechanical and in-plane electrical loadings. Mech. Mater. 88, 12–29 (2015)

    Article  Google Scholar 

  11. Gu, S.-T., Liu, J.-T., He, Q.-C.: Piezoelectric composites: imperfect interface models, weak formulations and benchmark problems. Comp. Mater. Sci. 94, 182–190 (2014)

    Google Scholar 

  12. Gu, S.-T., Liu, J.-T., He, Q.-C.: The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int. J. Eng. Sci. 85, 31–46 (2014)

    Google Scholar 

  13. Gu, S.-T., Qin, L.: Variational principles and size-dependent bounds for piezoelectric inhomogeneous materials with piezoelectric coherent imperfect interfaces. Int. J. Eng. Sci. 78, 89–102 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  15. Hamilton, J.C., Wolfer, W.G.: Theories of surface elasticity for nanoscale objects. Surf. Sci. 603, 1284–1291 (2009)

    Article  Google Scholar 

  16. Javili, A., McBride, A., Mergheima, J., Steinmann, P., Schmidt, U.: Micro-to-macro transitions for continua with surface structure at the microscale. Int. J. Solids Struct. 50, 2561–2572 (2013)

    Article  Google Scholar 

  17. Jeong, J., Cho, M., Choi, J.: Effective mechanical properties of micro/nano-scale porous materials considering surface effects. Interact. Multiscale Mech. 4(2), 107–122 (2011)

    Article  Google Scholar 

  18. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Models of porous piezocomposites with 3–3 connectivity type in ACELAN finite element package. Mater. Phys. Mech. 37(1), 16–24 (2018)

    Google Scholar 

  19. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element homogenization models of bulk mixed piezocomposites with granular elastic inclusions in ACELAN package. Mater. Phys. Mech. 37(1), 25–33 (2018)

    Google Scholar 

  20. Nanthakumar, S.S., Lahmer, T., Zhuang, X., Park, H.S.: Topology optimization of piezoelectric nanostructures. J. Mech. Phys. Solids 94, 316–335 (2016)

    Article  MathSciNet  Google Scholar 

  21. Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878–892 (2014)

    Article  MathSciNet  Google Scholar 

  22. Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling and computer design of anisotropic elastic porous composites with surface stresses. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Advanced Structured Materials, vol. 59, pp. 107–122. Springer, Singapore (2017)

    Google Scholar 

  23. Nasedkin, A.V., Nasedkina, A.A., Remizov, V.V.: Finite element modeling of porous thermoelastic composites with account for their microstructure. Vycisl. meh. splos. sred—Comput. Contin. Mech. 7(1), 100–109 (2014)

    Google Scholar 

  24. Nasedkin, A.V., Shevtsova, M.S.: Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity. In: Parinov, I.A. (ed.) Ferroelectrics and Superconductors: Properties and Applications, pp. 231–254. Nova Science Publishers, NY (2011)

    Google Scholar 

  25. Nasedkin, A.V., Shevtsova, M.S.: Multiscale computer simulation of piezoelectric devices with elements from porous piezoceramics In: Parinov, I.A., Chang, S.-H. (eds.) Physics and Mechanics of New Materials and Their Applications, pp. 185–202. Nova Science Publishers, NY (2013)

    Google Scholar 

  26. Park, H.S., Devel, M., Wang, Z.: A new multiscale formulation for the electromechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 200, 2447–2457 (2011)

    Article  MathSciNet  Google Scholar 

  27. Ringgaard, E., Lautzenhiser, F., Bierregaard, L.M., Zawada, T., Molz, E.: Development of porous piezoceramics for medical and sensor applications. Materials 8(12), 8877–8889 (2015)

    Article  Google Scholar 

  28. Rybyanets, A.N., Rybyanets, A.A.: Ceramic piezocomposites: modeling, technology, and characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1757–1773 (2011)

    Article  Google Scholar 

  29. Topolov, V.Y., Bowen, C.R.: Electromechanical Properties in Composites Based on Ferroelectrics. Springer, London (2009)

    Google Scholar 

  30. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52–82 (2011)

    Article  Google Scholar 

  31. Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32(1), 83–100 (2016)

    Article  MathSciNet  Google Scholar 

  32. Wang, Z., Zhu, J., Jin, X.Y., Chen, W.Q., Zhang, Ch.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids 65, 138–156 (2014)

    Article  MathSciNet  Google Scholar 

  33. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech. 222(1–2), 59–67 (2011)

    Article  Google Scholar 

  34. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Evaluation of effective electroelastic properties of piezoelectric coated nano-inclusion composites with interface effect under antiplane shear. Int. J. Eng. Sci. 69, 61–68 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work for second author was supported by the Russian Science Foundation (grant number 15-19-10008-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nasedkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iovane, G., Nasedkin, A.V. (2019). Numerical Modelling of Two-Phase Piezocomposites with Interface Mechanical Anisotropic Effects. In: Altenbach, H., Belyaev, A., Eremeyev, V., Krivtsov, A., Porubov, A. (eds) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-11665-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11665-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11664-4

  • Online ISBN: 978-3-030-11665-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics