Dual Fractional Analysis of Blood Alcohol Model Via Non-integer Order Derivatives

  • Kashif Ali Abro
  • J. F. Gómez-AguilarEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 194)


The concentration of alcohol in blood differs with vessel diameter (arterial diameter). In case of arteries having thinner diameter, alcohol concentrates around their walls because of Fahraeus–Lindqvist effect. The fluctuating concentration of alcohol in blood directly affects normal human body functions causing peptic ulcer and hypertension. In this work, we made the comparative analysis of blood alcohol model via Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. The governing ordinary differential equations of blood alcohol model have been converted in terms of non-integers order derivatives. The analytic calculations of the concentrations of alcohol in stomach \((C_1(t))\) and the concentrations of alcohol in the blood \((C_2(t))\) have been investigated by applying Laplace transform method. The general solutions of the concentrations of alcohol in stomach \((C_1(t))\) and the concentrations of alcohol in the blood \((C_2(t))\) are expressed in the terms of wright function \(\varPhi (a,b;c)\). The graphs of both types of concentrations are depicted on the basis of fractional parameters of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. Finally, the comparative analysis of both fractional types of concentration of alcohol level in blood decay faster for higher fractional order.


Fractional calculus Atangana–Baleanu fractional derivative Blood alcohol model 



The authors are highly thankful and grateful to Mehran university of Engineering and Technology, Jamshoro, Pakistan for generous support and facilities of this research work. José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.


  1. 1.
    National Health and Family Planning Commission. China Health and Family Planning Statistics Yearbook 2014. Peking Union Medical College Press, Beijing (2014)Google Scholar
  2. 2.
    Jokinen, E.: Obesity and cardiovascular disease. Minerva Pediatr. 67(1), 1–25 (2015)Google Scholar
  3. 3.
    O’Keefe, J.H., Bybee, K.A., Lavie, C.J.: Alcohol and cardiovascular health: the razor-sharp double-edged sword. J. Am. Coll. Cardiol. 50(11), 1009–1014 (2007)CrossRefGoogle Scholar
  4. 4.
    Larsson, S.C., Wallin, A., Wolk, A.: Alcohol consumption and risk of heart failure: meta-analysis of 13 prospective studies. Clin. Nutr. 37(4), 1247–1251 (2018)CrossRefGoogle Scholar
  5. 5.
    Friedman, H.S.: Cardiovascular effects of alcohol with particular reference to the heart. Alcohol 1(4), 333–339 (1984)CrossRefGoogle Scholar
  6. 6.
    Global strategy to reduce the harmful use of alcohol. World Health Organization, Switzerland, Geneva (2010)Google Scholar
  7. 7.
    Penning, R., McKinney, A., Verster, J.C.: Alcohol hangover symptoms and their contribution to the overall hangover severity. Alcohol Alcohol. 47(3), 248–252 (2012)CrossRefGoogle Scholar
  8. 8.
    McKinney, A.: A review of the next day effects of alcohol on subjective mood ratings. Curr. Drug Abus. Rev. 3, 88–91 (2010)CrossRefGoogle Scholar
  9. 9.
    Global Strategy to Reduce the Harmful Use of Alcohol. World Health Organization, Geneva, Switzerland (2014)Google Scholar
  10. 10.
    Sopasakis, P., Sarimveis, H., Macheras, P., Dokoumetzidis, A.: Fractional calculus in pharmacokinetics. J. Pharmacokinet. Pharmacodyn. 45(1), 107–125 (2018)CrossRefGoogle Scholar
  11. 11.
    Hristov, J.: Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. Front. Fract. Calc. 1, 270–342 (2017)Google Scholar
  12. 12.
    Atangana, A., Koca, I.: On the new fractional derivative and application to nonlinear Baggs and Freedman model. J. Nonlinear Sci. Appl. 9, 2467–2480 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhuo, L., Liu, L., Dehghan, S., Yang, Q.C., Xue, D.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control. 90(6), 1165–1181 (2016)Google Scholar
  16. 16.
    Kashif, A.A., Mukarrum, H., Mirza, M.B.: A mathematical analysis of magnetohydrodynamic generalized Burger fluid for permeable oscillating plate. Punjab Univ. J. Math. 50(2), 97–111 (2018)Google Scholar
  17. 17.
    Ali, F., Saqib, M., Khan, I., Sheikh, N.A.: Application of Caputo–Fabrizio derivatives to MHD free convection flow of generalized Walters’-B fluid model. Eur. Phys. J. Plus 131(10), 1–10 (2016)Google Scholar
  18. 18.
    Sheikh, N.A., Ali, F., Khan, I., Gohar, M., Saqib, M.: On the applications of nanofluids to enhance the performance of solar collectors: a comparative analysis of Atangana–Baleanu and Caputo–Fabrizio fractional models. Eur. Phys. J. Plus 132(12), 1–11 (2017)Google Scholar
  19. 19.
    Muhammad, J., Kashif, A.A., Najeeb, A.K.: Helices of fractionalized Maxwell fluid. Nonlinear Eng. 4(4), 191–201 (2015)Google Scholar
  20. 20.
    Sheikh, N.A., Ali, F., Saqib, M., Khan, I., Jan, S.A.A., Alshomrani, A.S., Alghamdi, M.S.: Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 7, 789–800 (2017)CrossRefGoogle Scholar
  21. 21.
    Ali, F., Jan, S.A.A., Khan, I., Gohar, M., Sheikh, N.A.: Solutions with special functions for time fractional free convection flow of Brinkman-type fluid. Eur. Phys. J. Plus 131(9), 1–11 (2016)Google Scholar
  22. 22.
    Gómez-Aguilar, J.F., Morales-Delgado, V.F., Taneco-Hernández, M.A., Baleanu, D., Escobar-Jiménez, R.F., Al Quarashi, M.M.: Analytical solutions of the electrical RLC circuit via Liouville–Caputo operators with local and non-local kernels. Entropy 18, 1–22 (2016)Google Scholar
  23. 23.
    Abro, K.A., Memon, A.A., Uqaili, M.A.: A comparative mathematical analysis of RL and RC electrical circuits via Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. Eur. Phys. J. Plus 133(3), 1–9 (2018)Google Scholar
  24. 24.
    Koca, I., Atangana, A.: Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. Therm. Sci. 21(6), 2299–2305 (2017)CrossRefGoogle Scholar
  25. 25.
    Abro, K.A., Hussain, M., Baig, M.M.: An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana–Baleanu fractional derivatives. Eur. Phys. J. Plus 132(10), 1–12 (2017)Google Scholar
  26. 26.
    Ludwin, C.: Blood alcohol content. Undergrad. Math. Model. 3(2), 1–8 (2011)Google Scholar
  27. 27.
    Almeida, R., Bastos, N.R., Monteiro, M.T.T.: Modeling some real phenomena by fractional differential equations. Math. Methods Appl. Sci. 39(16), 4846–4855 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nazir, A., Ahmed, N., Khan, U., Mohyud-Din, S.T.: Analytical approach to study a mathematical model of \(CD4+T-\)cells. Int. J. Biomath. 11(04), 1–18 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRefGoogle Scholar
  30. 30.
    Abro, K.A., Chandio, A.D., Irfan, A.A., Khan, I.: Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J. Therm. Anal. Calorim. 1, 1–11 (2018)Google Scholar
  31. 31.
    Kashif, A.A., Mohammad, M.R., Khan, I., Irfan, A.A., Asifa, T.: Analysis of Stokes’ second problem for nanofluids using modern fractional derivatives. J. Nanofluids 7, 738–747 (2018)Google Scholar
  32. 32.
    Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)Google Scholar
  33. 33.
    Abro, K.A., Khan, I.: Analysis of heat and mass transfer in MHD flow of generalized casson fluid in a porous space via non-integer order derivative without singular kernel. Chin. J. Phys. 55(4), 1583–1595 (2017)Google Scholar
  34. 34.
    Khan, A., Abro, K.A., Tassaddiq, A., Khan, I.: Atangana–Baleanu and Caputo Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: a comparative study. Entropy 19(8), 1–12 (2017)CrossRefGoogle Scholar
  35. 35.
    Al-Mdallal, Q., Abro, K.A., Khan, I.: Analytical solutions of fractional Walter’s B fluid with applications. Complexity 1, 1–12 (2018)CrossRefGoogle Scholar
  36. 36.
    Laghari, M.H., Abro, K.A., Shaikh, A.A.: Helical flows of fractional viscoelastic fluid in a circular pipe. Int. J. Adv. Appl. Sci. 4(10), 97–105 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Basic Sciences and Related StudiesMehran University of Engineering and TechnologyJamshoroPakistan
  2. 2.CONACYT-Tecnológico Nacional de MéxicoCentro Nacional de Investigación y Desarrollo TecnológicoCuernavacaMéxico

Personalised recommendations