Skip to main content

Ballistic and Blast Trauma

  • Chapter
  • First Online:

Abstract

Exposure to blast and ballistic threats occurs in both defence and civilian environments and is, unfortunately, still common today (see also Chap. 1). Ballistic injury refers to the interaction of a projectile and the human body leading to penetrating or blunt trauma, while blast injury refers to detonation of an explosive and the subsequent complex interaction of the blast, fragments and debris with the human body. There is, of course, overlap between ballistic injury and blast fragmentation. Some common areas of blast injury include the lower extremity, thorax and head, although all body regions may be exposed to blast loading. Similarly, all body regions are susceptible to ballistic injury where protection is often first focused on life-sustaining organs (heart, lungs and brain). Active areas of research include head injury in blast, vehicle and vehicle occupant blast protection, and fragmentation and ballistic protection of the head, face and thorax, including behind armour blunt trauma (BABT).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AIS (2015) The abbreviated injury scale dictionary 2015 revision. Association for the Advancement of Automotive Medicine, Chicago IL, USA

    Google Scholar 

  • Axelsson H, Yelverton JT (1994) Chest wall velocity as a predictor of non-auditory blast injury in a complex wave environment. In: 7th international symposium of weapons traumatology and wound ballistics, St Petersburg, Russia

    Google Scholar 

  • Baker W (1973) Explosions in air. University of Texas Press, USA

    Google Scholar 

  • Bangash M (1993) Impact and explosion: structural analysis and design. Blackwell Scientific Publications, Great Britain

    Google Scholar 

  • Bass C, Rafaels K, Salzar R (2006a) Pulmonary injury risk assessment for short-duration blasts. In: Personal armour systems symposium (PASS) 2006, Leeds, UK

    Google Scholar 

  • Bass CR et al (2006b) Injury risk in behind armor blunt thoracic trauma. Int J Occup Saf Ergon (JOSE) 12(4):429–442

    Article  Google Scholar 

  • Bergeron D, Walker R, Coffey C (1998) Detonation of 100-g anti-personnel mine surrogate charges in sand. Report number SR 668. Defence Research Establishment Suffield, Canada

    Google Scholar 

  • Bir C (2017) Behind armor blunt trauma: recreation of field cases for the assessment of backface signature testing. In: Ballistics 30th international symposium, 11–15 Sept 2017

    Google Scholar 

  • Bowen I, Fletcher E, Richmond D (1968) Estimate of man’s tolerance to the direct effects of air blast. Technical Report, DASA-2113. Defense Atomic Support Agency, Department of Defence, Washington, DC, USA

    Google Scholar 

  • Bulson P (1997) Explosive loading of engineering structures. Taylor & Francis, New York

    Book  Google Scholar 

  • Cannon L (2001) Behind armour blunt trauma—an emerging problem. J R Army Med Corps 147(1):87–96

    Article  Google Scholar 

  • Carr D, Horsfall I, Malbon C (2013) Is behind armour blunt trauma a real threat to users of body armour? A systematic review. J R Army Med Corps 162(1):8–11

    Article  Google Scholar 

  • Clare V, Lewis J, Mickiewicz A, Sturdivan L (1975) Body armor-blunt trauma data. EB-TR-75016. Aberdeen Proving Ground, MD, Edgewood Arsenal, 1975. Defense Technical Information Center, http://www.dtic.mil/dtic/tr/fulltext/u2/a012761.pdf. Accessed 21 Aug 2018

  • Clemedson C (1956) Blast injury. Physiol Rev 36(3):336–354

    Article  Google Scholar 

  • Cooper G, Dudley H (1997) Scientific foundations of trauma. Butterworth-Heinemann Publ., Oxford

    Google Scholar 

  • Coupland R (1993) War wounds of limbs—surgical management. Butterworth-Heinemann Publ., Oxford

    Google Scholar 

  • Coupland R, Korver A (1991) Injuries from antipersonnel mines: the experience of the international committee of the red cross. Brit Med J 303:1509–1512

    Article  Google Scholar 

  • Croft J, Longhurst D (2007) HOSDB body armour standards for UK Police (2007) part 2: ballistic resistance. Publication No. 39/07/B, http://www.bsst.de/content/PDF/39-07-B_-_HOSDB_Body_Armour1.pdf. Accessed 22 Sept 2013

  • Cronin DS, Williams KV, Bass CR, Magnan P, Dosquet F, Bergeron D, van Bree J (2003) Test methods for protective footwear against AP mine blast. In: NATO joint AVT-HFM symposium, Koblenz, Germany

    Google Scholar 

  • Cronin DS, Greer A, Williams KV, Salisbury C (2004) Numerical modeling of blast trauma to the human torso. In: Personal armour systems symposium (PASS), The Hague, The Netherlands

    Google Scholar 

  • Cronin DS, Williams KV, Salisbury C (2011) Development and evaluation of a physical surrogate leg to predict landmine injury. J Mil Med 176(12):1408–1416

    Article  Google Scholar 

  • den Reijer P (1991) Impact on ceramic faced armour. Ph.D. thesis, Technical University Delft, Delft, The Netherlands

    Google Scholar 

  • Dobratz B, Crawford P (1985) Properties of chemical explosives and explosives simulants. LLNL explosives handbook, UCRL-52997. Livermore CA, USA: Lawrence Livermore Laboratory

    Google Scholar 

  • Fackler M (1987) What’s wrong with wound ballistics literature and why. US Army Medical Research and Development Command

    Google Scholar 

  • Fackler M, Malinowski J (1988) Ordnance gelatin for ballistic studies. Am J Forensic Med Pathol 9:218–219

    Article  Google Scholar 

  • Flynn M (2009) State of the insurgency—trends, intentions and objectives. ISAF, Afghanistan

    Google Scholar 

  • Gibbs T, Popolato A (1980) LASL explosive property data. University of California Press, California

    Google Scholar 

  • Glasner J (2007) The Halifax explosion: surviving the blast that shook a nation. Altitude Pub., Canmore

    Google Scholar 

  • Gryth D, Drobin D, Persson J, Aborelius U, Hansson K, Malm E, Bursell J, Olsson L, Kjellström B (2003) Severity of behind armour blunt trauma (BABT) de-pends on extent of deformation of body armour—studies in swine. In: NATO joint AVT-HFM symposium, Koblenz, Germany, 19–22 May 2003

    Google Scholar 

  • Gupta R, Przekwas A (2013) Mathematical models of blast induced TBI: current status, challenges and prospects. Front Neurol 4(59)

    Google Scholar 

  • Haladuick T, Cronin DS, Lockhart P, Singh D, Bouamoul A, Ouellet S, Dionne JP (2012) Head kinematics resulting from simulated blast loading scenarios. In: Personal armour systems symposium (PASS) 2012, Nuremberg, Germany

    Google Scholar 

  • Hanlon E, Gillich P (2012) Origin of the 44-mm behind-armor blunt trauma standard. Mil Med 177(3):333–339

    Article  Google Scholar 

  • Hetherington J, Smith P (1994) Blast and ballistic loading of structures. Butterworth-Heinemann, Burlington

    Google Scholar 

  • Hyde D (1998) Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1, Fundamentals of Protective Design for Conventional Weapons (User’s Guide). Report ADA195867. Vicksburg, MS: Department of the Army, Waterways Experiment Station, Corps of Engineers

    Google Scholar 

  • Jussila J (2004) Preparing ballistic gelatine—review and proposal for a standard method. Forensic Sci Int 141:91–98

    Article  Google Scholar 

  • Kingery C, Bulmash G (1984) Airblast parameters from TNT spherical air burst and hemispherical surface burst. Report ARBL-TR-02555, U.S. Army BRL, Aberdeen Proving Ground, MD

    Google Scholar 

  • Knudsen P (2010) NATO task group on behind armour blunt trauma (RTO-TR-HFM-024). Thoracic Response to Undefeated Body Armour, Report RTO-TR-IST-999

    Google Scholar 

  • Krug E (ed) (2002) World report on violence and health. World Health Organization, Geneva, http://www.who.int/violence_injury_prevention/violence/en/. Accessed 22 Sept 2013

  • Lockhart P, Cronin DS (2015) Helmet foam evaluation to mitigate head response from primary blast exposure. Comput Methods Biomech Biomed Eng 18(6):635–645

    Article  Google Scholar 

  • Mahoney PF, Ryan J, Brooks A, Schwab CW (2005) Ballistic trauma: a practical guide, 2nd edn. Springer Publ., New York

    Book  Google Scholar 

  • Makris A, Dionne JP, Mitric B (2004) Innovative protective helmet for chem-bio/blast threats. In: International soldier systems conference (ISSC), Boston, Massachusetts, USA

    Google Scholar 

  • Manseau J, Williams K, Dionne JP, Levine J (2006) Response of the hybrid III dummy subjected to free-field blasts—focussing on tertiary blast injuries. MABS 2006

    Google Scholar 

  • Marsh S (1980) LASL shock Hugoniot data. University of California Press, California

    Google Scholar 

  • Mayorga M (1997) The pathology of primary blast overpressure injury. Toxicology 121(1):17–28

    Article  Google Scholar 

  • Mayorga MA, Anderson I, van Bree JLMJ, Gotts P, Sarron JC, Knudsen PJT (2010) Thoracic response to undefeated body armour. RTO-TR-HFM-024, https://doi.org/10.14339/rto-tr-hfm-024

  • Metker L, Prather R, Johnson E (1975) A method for determining backface signatures of soft body armors. EB-TR-75029. Aberdeen Proving Ground, MD, Edgewood Arsenal, 1975. Defense Technical Information Center, http://www.dtic.mil/dtic/tr/fulltext/u2/a012797.pdf. Accessed 21 Aug 2018

  • Meyers M (1994) Dynamic behavior of materials. Wiley, Toronto

    Book  Google Scholar 

  • Molde A, Naevin J, Coupland R (2001) Care in the field for victims of weapons of war. International Committee of the Red Cross, Geneva

    Google Scholar 

  • Montanarelli N, Hawkins C, Goldfarb M, Ciurej T (1973) Protective garments for public officials. LWL-TR-30B73. Aberdeen Proving Ground, MD, Edgewood Arsenal, 1973. Defense Technical Information Center, http://www.dtic.mil/dtic/tr/fulltext/u2/a089163.pdf. Accessed 21 Aug 2018

  • National Research Council (2012) Testing of body armor materials, phase III. National Academies Press. https://doi.org/10.17226/13390

  • Nechaev E, Gritsanov A, Fomin N, Minnullin I (1995) Mine blast trauma—experience from the war in Afghanistan. Russian Ministry of Public Health and Medical Industry, Russian R.R. Vreden Research Institute of Traumatology, translated from Russian by the Council Communication, Stockholm, Sweden

    Google Scholar 

  • Needham C, Weiss G, Przekwas A, Tan X, Merkle A, Iyer K (2013) Challenges in measuring and modeling whole body blast effects, http://ftp.rta.nato.int/public/PubFullText/RTO/MP/RTO-MP-HFM-207///MP-HFM-207-12.doc. Accessed 20 Sept 2013

  • Nelson M (1970) Underwater blast injury—a review of the literature. Report Number 646, Bureau of Medicine and Surgery, Navy Department. Research Work Unit MF099

    Google Scholar 

  • Nerenberg J, Dionne JP, Makris A, Fisher G (2002) Evaluation of the ABS-LPU ensemble for compliance with U.S. army advanced bomb suit program. UXO/Countermine Forum, Orlando, Florida, USA

    Google Scholar 

  • NIJ (2008) National Institute of Justice NIJ Standard-0101.06 Ballistic Resistance of Body Armor, http://www.nij.gov/nij/pubs-sum/223054.htm. Accessed 20 Sept 2013

  • Prather R, Swann C, Hawkins C (1977) Backface signatures of soft body armors and the associated trauma effects. ARCSL-TR-77055. Aberdeen Proving Ground, Md.: Edge-wood Arsenal, http://www.dtic.mil/dtic/tr/fulltext/u2/a049463.pdf. Accessed 17 Oct 2018

  • Rafaels K, Bass C, Panzer M, Salzar R (2010) Pulmonary injury risk assessment for long-duration blasts: a meta-analysis. J Trauma 69(2):368–374

    Article  Google Scholar 

  • Ritzel D, Parks SA, Roseveare J, Rude G, Sawyer T (2011) Experimental blast simulation for injury studies. HFM-207 NATO, Halifax

    Google Scholar 

  • Robertson N, Hayhurst C, Fairlie G (1994) Numerical simulation of explosion phenomena. Int J Comput Appl Technol 7(3–6):316–329

    Google Scholar 

  • Sellier K, Kneubuehl B (1994) Wound ballistics and the scientific background. Elsevier, UK. ISBN 0-444-81511-2

    Google Scholar 

  • Singh D, Cronin DS, Lockhart P, Haladuick T, Bouamoul A, Dionne JP (2012) Evaluation of head response to blast using sagittal and transverse finite element head models. In: Personal armour systems symposium (PASS), Nuremberg, Germany

    Google Scholar 

  • Small Arms Survey (2012) Tracking national homicide rates: generating estimates using vital registration data, armed violence: issue brief, number 1, http://www.smallarmssurvey.org/fileadmin/docs/G-Issue-briefs/SAS-AVD-IB1-tracking-homicide.pdf. Accessed 20 Sept 2013

  • Small Arms Survey (2013a) Conflict armed violence, armed violence, http://www.smallarmssurvey.org/armed-violence/conflict-armed-violence.html. Accessed 20 Sept 2013

  • Small Arms Survey (2013b) Indirect conflict deaths, armed violence, http://www.smallarmssurvey.org/armed-violence/conflict-armed-violence/indirect-conflict-deaths.html. Accessed 20 Sept 2013

  • Sonden A, Rocksen D, Riddez L, Davidsson J, Persson JK, Gryth D, Bursell J, Arborelius UP (2009) Trauma attenuating backing improves protection against behind armor blunt trauma. J Trauma 67(6):1191–1199

    Article  Google Scholar 

  • Stuhmiller J, Ho K, Vorst M, Dodd K, Fitzpatrick T, Mayorga M (1996) A model of blast overpressure injury to the lung. J Biomech 29:227–234

    Article  Google Scholar 

  • Thom C, Cronin DS (2009) Shock wave amplification by fabric materials. Shock Waves 19(1):39–48

    Article  Google Scholar 

  • US Department of the Army (1967) Explosives and demolitions. Headquarters Department of the Army, Washington, DC, Field Manual 5-25

    Google Scholar 

  • US Department of the Army (1990) Structures to resist the effects of accidental explosions. Technical Manual 5-1300, Nov 1990

    Google Scholar 

  • Wightman J, Gladish S (2001) Explosions and blast injuries. Ann Emerg Med 37(6):664–678

    Article  Google Scholar 

  • Wilbeck J (1978) Impact behavior of low strength projectiles. Air Force Materials Lab Wright-Patterson AFB OH, 7/1978

    Google Scholar 

  • Wilkins M (1978) Mechanics of penetration and perforation. Int J Eng Sci 16:793–807

    Article  Google Scholar 

  • World Health Organization (WHO) (2018) World health statistics 2018, monitoring health for the SDGs (Sustainable Development Goals), http://apps.who.int/iris/bitstream/handle/10665/272596/9789241565585-eng.pdf?ua=1. Accessed 19 Aug 2018

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitt, KU., Niederer, P.F., Cronin, D.S., Morrison III, B., Muser, M.H., Walz, F. (2019). Ballistic and Blast Trauma. In: Trauma Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-11659-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11659-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11658-3

  • Online ISBN: 978-3-030-11659-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics