Efficiently Computing Alignments

Algorithm and Datastructures
  • Boudewijn F. van DongenEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)


Conformance checking is considered to be anything where observed behaviour needs to be related to already modelled behaviour. Fundamental to conformance checking are alignments which provide a precise relation between a sequence of activities observed in an event log and a execution sequence of a model. However, computing alignments is a complex task, both in time and memory, especially when models contain large amounts of parallelism.

In this tool paper we present the actual algorithm and memory structures used for the experiments of [15]. We discuss the time complexity of the algorithm, as well as the space and time complexity of the main data structures. We further present the integration in ProM and a basic code snippet in Java for computing alignments from within any tool.


Alignments Conformance checking Process mining 


  1. 1.
    van der Aalst, W.M.P.: Decomposing Petri nets for process mining: a generic approach. Distrib. Parallel Databases 31(4), 471–507 (2013)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  3. 3.
    Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Eindhoven University of Technology, Department of Computer Science (2014)Google Scholar
  4. 4.
    Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997). Scholar
  5. 5.
    Berkelaar, M., Eikland, K., Notebaert, P.: lpsolve: open source (mixed-integer) linear programming systemGoogle Scholar
  6. 6.
    de Leoni, M., Marrella, A.: Aligning real process executions and prescriptive process models through automated planning. Expert Syst. Appl. 82, 162–183 (2017)CrossRefGoogle Scholar
  7. 7.
    Eastlake, D., Fowler, G., Vo, K.-P., Noll, L.: The FNV non-cryptographic hash algorithm (2015)Google Scholar
  8. 8.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  9. 9.
    Gómez López, M.T., Borrego, D., Carmona, J., Gasca, R.M.: Computing alignments with constraint programming: the acyclic case. In: Proceedings of ATAED 2016, Torun, Poland, 20–21 June 2016. CEUR Workshop Proceedings, vol. 1592, pp. 96–110. (2016)Google Scholar
  10. 10.
    Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)CrossRefGoogle Scholar
  11. 11.
    Reißner, D., Conforti, R., Dumas, M., La Rosa, M., Armas-Cervantes, A.: Scalable conformance checking of business processes. In: Panetto, H., et al. (eds.) OTM 2017 Conferences, Part I. LNCS, vol. 10573, pp. 607–627. Springer, Cham (2017). Scholar
  12. 12.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  13. 13.
    Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of large structured process models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 197–214. Springer, Cham (2016). Scholar
  14. 14.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). Scholar
  15. 15.
    van Dongen, B.F.: Efficiently computing alignments using the extended marking equation. In: Accepted for BPM 2018, Sydney Australia (2018)Google Scholar
  16. 16.
    van Zelst, S.J., Bolt, A., van Dongen, B.F.: Tuning alingment computation: an experimental evaluation. In: Proceedings of ATAED 2017, Zaragoza, Spain, 25–30 June 2017, pp. 1–15 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations