A Framework to Evaluate and Compare Decision-Mining Techniques

  • Toon JouckEmail author
  • Massimiliano de Leoni
  • Benoît Depaire
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)


During the last decade several decision mining techniques have been developed to discover the decision perspective of a process from an event log. The increasing number of decision mining techniques raises the importance of evaluating the quality of the discovered decision models and/or decision logic. Currently, the evaluations are limited because of the small amount of available event logs with decision information. To alleviate this limitation, this paper introduces the ‘DataExtend’ technique that allows evaluating and comparing decision-mining techniques with each other, using a sufficient number of event logs and process models to generate evaluation results that are statistically significant. This paper also reports on an initial evaluation using ‘DataExtend’ that involves two techniques to discover decisions, whose results illustrate that the approach can serve the purpose.


Decision mining Evaluation Log generation 


  1. 1.
    Object Management Group: Decision Model And Notation 1.1, June 2016Google Scholar
  2. 2.
    Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006). Scholar
  3. 3.
    de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: discovering decisions in processes using alignments. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1454–1461. ACM (2013)Google Scholar
  4. 4.
    Bazhenova, E., Buelow, S., Weske, M.: Discovering decision models from event logs. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp. 237–251. Springer, Cham (2016). Scholar
  5. 5.
    De Smedt, J., Hasić, F., vanden Broucke, S.K.L.M., Vanthienen, J.: Towards a holistic discovery of decisions in process-aware information systems. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 183–199. Springer, Cham (2017). Scholar
  6. 6.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision mining revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016). Scholar
  7. 7.
    Jouck, T., Depaire, B.: Generating artificial data for empirical analysis of control-flow discovery algorithms: a process tree and log generator. Bus. Inf. Syst. Eng. 18 (2018)Google Scholar
  8. 8.
    Van Der Aalst, W.M.P., Ter Hofstede, A.H.: Verification of workflow task structures: a petri-net-baset approach. Inf. Syst. 25(1), 43–69 (2000)CrossRefGoogle Scholar
  9. 9.
    Burattin, A.: PLG2: multiperspective process randomization with online and offline simulations. In: BPM (Demos), pp. 1–6 (2016)Google Scholar
  10. 10.
    Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow controlflow patterns: a revised view. Technical report 06-22 (2006)Google Scholar
  11. 11.
    Rosca, D., Wild, C.: Towards a flexible deployment of business rules. Expert Syst. Appl. 23(4), 385–394 (2002)CrossRefGoogle Scholar
  12. 12.
    Kunze, M., Luebbe, A., Weidlich, M., Weske, M.: Towards understanding process modeling – the case of the BPM academic initiative. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 44–58. Springer, Heidelberg (2011). Scholar
  13. 13.
    Siegel, S., Castellan Jr., N.J.: Nonparametric Statistics for the Behavioral Sciences, 2nd edn. Mcgraw-Hill Book Company, New York (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Toon Jouck
    • 1
    Email author
  • Massimiliano de Leoni
    • 2
  • Benoît Depaire
    • 1
  1. 1.UHasselt - Hasselt UniversityHasseltBelgium
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations