Leveraging Regression Algorithms for Predicting Process Performance Using Goal Alignments

  • Karthikeyan PonnalaguEmail author
  • Aditya Ghose
  • Hoa Khanh Dam
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)


Industry-scale context-aware processes typically manifest a large number of variants during their execution. Being able to predict the performance of a partially executed process instance (in terms of cost, time or customer satisfaction) can be particularly useful. Such predictions can help in permitting interventions to improve matters for instances that appear likely to perform poorly. This paper proposes an approach for leveraging the process context, process state, and process goals to obtain such predictions.


Variability Contextual factor analysis Business process mining 


  1. 1.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Mining configurable process models from collections of event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 33–48. Springer, Heidelberg (2013). Scholar
  2. 2.
    Ghose, A.K., Narendra, N.C., Ponnalagu, K., Panda, A., Gohad, A.: Goal-driven business process derivation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 467–476. Springer, Heidelberg (2011). Scholar
  3. 3.
    Heinrich, R., Merkle, P., Henss, J., Paech, B.: Integrating business process simulation and information system simulation for performance prediction. Softw. Syst. Model. 1, 1–21 (2015)Google Scholar
  4. 4.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for correlating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014). Scholar
  5. 5.
    Magdaleno, A.M., de Oliveira Barros, M., Werner, C.M.L., de Araujo, R.M., Batista, C.F.A.: Collaboration optimization in software process composition. J. Syst. Softw. 103, 452–466 (2015)CrossRefGoogle Scholar
  6. 6.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). Scholar
  7. 7.
    Mrquez-Chamorro, A.E., Resinas, M., Ruiz-Corts, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. (2017)Google Scholar
  8. 8.
    Ponnalagu, K., Ghose, A., Narendra, N.C., Dam, H.K.: Goal-aligned categorization of instance variants in knowledge-intensive processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 350–364. Springer, Cham (2015). Scholar
  9. 9.
    Yu, Y., et al.: Case analytics workbench: platform for hybrid process model creation and evolution. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 226–241. Springer, Cham (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karthikeyan Ponnalagu
    • 1
    Email author
  • Aditya Ghose
    • 2
  • Hoa Khanh Dam
    • 2
  1. 1.Robert BoschBangaloreIndia
  2. 2.University of WollongongWollongongAustralia

Personalised recommendations