Skip to main content

Far-Field Modeling of a Deep-Sea Blowout: Sensitivity Studies of Initial Conditions, Biodegradation, Sedimentation, and Subsurface Dispersant Injection on Surface Slicks and Oil Plume Concentrations

  • Chapter
  • First Online:
Deep Oil Spills

Abstract

Modeling of large-scale oil transport and fate resulting from deep-sea oil spills is highly complex due to a number of bio-chemo-geophysical interactions, which are often empirically based. Predicting mass-conserved total petroleum hydrocarbon concentrations is thus still a challenge for most oil spill models. In addition, dynamic quantification and visualization of spilled oil concentrations are necessary both for first response and basin-wide impact studies. This chapter presents a new implementation of the Connectivity Modeling System (CMS) oil application that tracks individual multi-fraction oil droplets and estimates oil concentrations and oil mass in a 3D space grid. We used the Deepwater Horizon (DWH) blowout as a case study and performed a sensitivity analysis of several modeling key factors, such as biodegradation, sedimentation, and alternative initial conditions, including droplet size distribution (DSD) corresponding to an untreated and treated live oil from subsurface dispersant injection (SSDI) predicted experimentally under high pressure and by the VDROP-J jet-droplet formation model. This quantitative analysis enabled the reconstruction of a time evolving three-dimensional (3D) oil plume in the ocean interior, the rising and spreading of oil on the ocean surface, and the effect of SSDI in shifting the oil to deeper waters while conserving the mass balance. Our modeling framework and analyses are thus important technical advances for understanding and mitigating deep-sea blowouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams EE, Socolofsky SA, Boufadel M (2013) Comment on “evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport”. Environ Sci Technol 47:11905

    Article  CAS  Google Scholar 

  • Aman ZM, Paris CB (2013) Response to comment on “Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport”. Environ Sci Technol 47:11906–11907

    Article  CAS  Google Scholar 

  • Aman ZM, Brown EP, Sloan ED, Sum AK, Koh CA (2011) Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion. Phys Chem Chem Phys 13:19796–19806

    Article  CAS  Google Scholar 

  • Aman ZM, Paris CB, May EF, Johns ML, Lindo-Atichati D (2015) High-pressure visual experimental studies of oil-in-water dispersion droplet size. Chem Eng Sci 127:392–400. https://doi.org/10.1016/j.ces.2015.01.058

    Article  CAS  Google Scholar 

  • Bandara UC, Yapa PD (2011) Bubble sizes, breakup, and coalescence in Deepwater gas/oil plumes. J Hydraul Eng 137(7):729–738

    Article  Google Scholar 

  • Boxall JA, Koh CA, Sloan ED, Sum AK, Wu DT (2012) Droplet size scaling of water-in-oil emulsions under turbulent flow. Langmuir 28:104–110

    Article  CAS  Google Scholar 

  • Brooks GR, Larson RA, Schwing PT, Romero I, Moore C, Reichart GJ, Jilbert T, Chanton JP, Hastings DW, Overholt WA, Marks KP, Kostka JE, Holmes CW, Hollander D (2015) Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout. PLoS One 10:1–24. https://doi.org/10.1371/journal.pone.0132341

    Article  CAS  Google Scholar 

  • Bubenheim P, Hackbusch S, Joye S, Kostka J, Larter SR, Liese A, Lincoln S, Marietou A, Müller R, Noirungsee N, Oldenburg TBP, Radović J, Viamonte J (2020) Biodegradation of hydrocarbons in deep water and sediments (Chap. 7). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Chassignet EP, Smith LT, Halliwell GR, Bleck R (2003) North Atlantic simulations with the hybrid coordinate ocean model (HYCOM): impact of vertical coordinate choice, reference pressure and thermobaricity. J Phys Oceanogr 33:2504–2526

    Article  Google Scholar 

  • Cummings JA (2005) Operational multivariate ocean data assimilation. Q J R Meteorol Soc 131:3583–3604. https://doi.org/10.1256/qj.05.105

    Article  Google Scholar 

  • Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18–33

    Article  Google Scholar 

  • Davis CS, Loomis NC (2014) Deepwater Horizon Oil Spill (DWHOS) water column technical working group image data processing plan: Holocam, description of data processing methods used to determine oil droplet size distributions from in situ holographic imaging during June 2010 on cruise M/V Jack Fitz 3. Woods Hole Oceanographic Institution; MIT/WHOI Joint Program in Oceanography. 15 Pages + Appendices

    Google Scholar 

  • De Gouw JA, Middlebrook AM, Warneke C, Ahmadov R, Atlas EL, Bahreini R, Blake DR, Brock CA, Brioude J, Fahey DW, Fehsenfeld FC, Holloway JS, Le Hénaff M, Lueb RA, McKeen SA, Meagher JF, Murphy DM, Paris C, Parrish DD, Perring AE, Pollack IB, Ravishankara AR, Robinson AL, Ryerson TB, Schwarz JP, Spackman JR, Srinivasan A, Watts LA (2011) Organic aerosol formation downwind from the Deepwater Horizon oil spill. Science 331(6022):1295–1299. https://doi.org/10.1126/science.1200320

    Article  CAS  Google Scholar 

  • Diercks AR, Highsmith RC, Asper VL, Joung DJ, Zhou Z, Guo L, Shiller AM, Joye SB, Teske AP, Guinasso N, Wade TL, Lohrenz SE (2010) Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophys Res Lett 37:L20602. https://doi.org/10.1029/2010GL045046

    Article  CAS  Google Scholar 

  • ERMA (Environmental Response Management Application) (2019) ERMA Deepwater Gulf Response. https://erma.noaa.gov/gulfofmexico/erma.html. Accessed 11 Mar 2019

  • Griffiths ST (2012) Oil release from Macondo well MC252 following the Deepwater Horizon oil accident. Environ Sci Technol 46:5616–5622

    Article  CAS  Google Scholar 

  • Gros J, Socolofsky SA, Dissanayake AL, Jun I, Zhao L, Boufadel MC, Reddy CM, Arey JS (2017) Petroleum dynamics during Deepwater Horizon. Proc Natl Acad Sci 114(38):10065–10070. https://doi.org/10.1073/pnas.1612518114

    Article  CAS  Google Scholar 

  • Halliwell GR (2004) Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Model 7:285–322

    Article  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT et al (2010) Deep-Sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  CAS  Google Scholar 

  • Hinze JO (1955) Fundamental of the hydrodynamic mechanism of splitting in dispersion processes. AICHE J 1(3):289–295

    Article  CAS  Google Scholar 

  • Hogan TF, Rosemond TE (1991) The description of the navy operational global atmospheric prediction system. Mon Weather Rev 119:1786–1815

    Article  Google Scholar 

  • Jaggi A, Snowdon RW, Stopford A, Radović JR, Oldenburg TBP, Larter R (2017) Experimental simulation of crude oil-water partitioning behavior of BTEX compounds during a deep submarine oil spill. Org Geochem 108. https://doi.org/10.1016/j.orggeochem.2017.03.006

    Article  CAS  Google Scholar 

  • Jaggi A, Snowdon RW, Radović J, Stopford A, Oldenburg TBP, Larter SR (2020) Partitioning of organics between oil and water phases with and without the application of dispersants (Chap. 8). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Johansen Ø, Rye H, Cooper C (2003) DeepSpill – field study of a simulated oil and gas blowout in deep water. Spill Sci Technol Bull 8:433–443. https://doi.org/10.1016/s1353-2561(02)00123-8

    Article  CAS  Google Scholar 

  • Kolmogorov A (1949) On the disintegration of drops in turbulent flow. Dokl Akad Nauk SSSR 66:825–828

    Google Scholar 

  • Kourafalou VH, Androulidakis YS (2013) Influence of Mississippi River induced circulation on the Deepwater Horizon oil spill transport. J Geophys Res Oceans 118:3823–3842. https://doi.org/10.1002/jgrc.20272

    Article  Google Scholar 

  • Larson RA, Brooks GR, Schwing PT, Diercks AR, Holmes CW, Chanton JP, Diaz-Asencio M, Hollander DJ (2020) Characterization of the sedimentation associated with the Deepwater Horizon blowout: depositional pulse, initial response, and stabilization (Chap. 14). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Le Hénaff M, Kourafalou VH, Paris CB, Helgers J, Aman ZM, Hogan PJ, Srinivasan A (2012) Surface evolution of the Deepwater Horizon oil spill patch: combined effects of circulation and wind-induced drift. Environ Sci Technol 46:7267–7273. https://doi.org/10.1021/es301570w

    Article  CAS  Google Scholar 

  • Li Z, Lee T, King T, Boufadel MC, Venosa AD (2008) Oil droplet size distribution as a function of energy dissipation rate in an experimental wave tank. Int Oil Spill Conf Proc 2008(1):621–626

    Article  Google Scholar 

  • Li Z, Spaulding M, French McCay D, Crowley D, Payne JR (2017) Development of a unified oil droplet size distribution model with application to surface breaking waves and subsea blowout releases considering dispersant effects. Mar Pollut Bull 114:247–257

    Article  CAS  Google Scholar 

  • Lindo-Atichati D, Paris CB, Le Hénaff M, Schedler M, Valladares Juárez AG, Müller R (2014) Simulating the effects of droplet size, high-pressure biodegradation, and variable flow rate on the subsea evolution of deep plumes from the Macondo blowout. Deep-Sea Res II Top Stud Oceanogr. https://doi.org/10.1016/j.dsr2.2014.01.011

    Article  CAS  Google Scholar 

  • Malone K, Pesch S, Schlüter M, Krause D (2018) Oil droplet size distributions in deep-sea blowouts: influence of pressure and dissolved gases. Environ Sci Technol 52:6326–6333

    Article  CAS  Google Scholar 

  • Malone K, Aman Z, Pesch S, Schlüter M, Krause D (2020) Jet formation at the spill site and resulting droplet size distributions (Chap. 4). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills – facts, fate and effects. Springer, Cham

    Google Scholar 

  • McNutt MK, Chu S, Lubchenco J, Hunter T, Dreyfus G, Murawski SA, Kennedy DM (2012a) Applications of science and engineering to quantify and control the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20222e20228. https://doi.org/10.1073/pnas.1214389109

    Article  Google Scholar 

  • McNutt MK, Camilli R, Crone TJ, Guthrie GD, Hsieh PA, Ryerson TB (2012b) Review of flow rate estimates of the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20260–20267

    Article  Google Scholar 

  • Nguyen UT, Lincoln SA, Valladares Juárez AG, Schedler M, Macalady JL, Müller R, Freeman KH (2018) The influence of pressure on crude oil biodegradation in shallow and deep Gulf of Mexico sediments. PLoS One 13(7):e0199784. https://doi.org/10.1371/journal.pone.0199784

    Article  CAS  Google Scholar 

  • Nixon Z, Zengel S, Baker M, Steinhoff M, Fricano G, Rouhani S, Michel J (2016) Shoreline oiling from the Deepwater Horizon oil spill. Mar Pollut Bull 107:170–178. https://doi.org/10.1016/j.marpolbul.2016.04.003

    Article  CAS  Google Scholar 

  • North EW, Adams EE, Thessen AE, Schlag Z, He R, Socolofsky SA, Masutani SM, Peckham SD (2015) The influence of droplet size and biodegradation on the transport of subsurface oil droplets during the Deepwater Horizon spill: a model sensitivity study. Environ Res Lett 10:024016. https://doi.org/10.1088/1748-9326/10/2/024016

    Article  CAS  Google Scholar 

  • Paris CB, Le Hénaff M, Aman ZM, Subramaniam A, Helgers J, Wang D-P, Kourafalou VH, Srinivasan A (2012) Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport. Environ Sci Technol 46:13293–13302. https://doi.org/10.1021/es303197h

    Article  CAS  Google Scholar 

  • Paris CB, Helgers J, van Sebille E, Srinivasan A (2013) Connectivity Modeling System: a probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environ Model Softw 42:47–54

    Article  Google Scholar 

  • Paris CB, Berenshtein I, Trillo ML, Faillettaz R, Olascoaga MJ, Aman ZM, Schlueter M, Joye SB (2018) BP Gulf Science Data reveals ineffectual subsea dispersant injection for the Macondo blowout. Front Mar Sci. https://doi.org/10.3389/fmars.2018.00389

  • Pesch S, Schlüter M, Aman ZM, Malone KM, Krause D, Paris CBP (2020) Behavior of rising droplets and bubbles – impact on the physics of deep-sea blowouts and oil fate (Chap. 5). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills – facts, fate and effects. Springer, Cham

    Google Scholar 

  • Pishro-Nik H (2014) Introduction to probability, statistics and random processes. Pubs. Kappa Research, LLC, Blue Bell. 744 pp.

    Google Scholar 

  • Rewick RD, Sabo KA, Smith JH (1984) The drop-weight interfacial tension method for predicting dispersant performance. In: Allen TE (ed) Oil spill chemical dispersants: research, experience, and recommendations, STP 840. American Society for Testing and Materials, Philadelphia, pp 94–107

    Chapter  Google Scholar 

  • Romero IC, Schwing PT, Brooks GR, Larson RA, Hastings DW, Ellis G, Goddard EA, Hollander DJ (2015) Hydrocarbons in deep-sea sediments following the 2010 Deepwater Horizon blowout in the Northeast Gulf of Mexico. PLoS One 10(5):e0128371. https://doi.org/10.1371/journal.pone.0128371

    Article  CAS  Google Scholar 

  • Romero IC, Toro-Farmer G, Diercks A-R, Schwing P, Muller-Karger F, Murawski S, Hollander DJ (2017) Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ Pollut 228:179–189

    Article  CAS  Google Scholar 

  • Schedler M, Hiessl R, Valladares Juárez AG, Gust G, Müller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4:77. https://doi.org/10.1186/s13568-014-0077-0

    Article  CAS  Google Scholar 

  • Schwing PT, Brooks GR, Larson RA Holmes CW, O’Malley BJ, Hollander DJ (2017) Constraining the spatial extent of the Marine Oil Snow Sedimentation and Accumulation (MOSSFA) following the DWH event using an excess 210Pbxs flux approach. Environ Sci Technol 51:5962–5968. https://doi.org/10.1021/acs.est.7b00450

    Article  CAS  Google Scholar 

  • Socolofsky SA, Adams EE, Sherwood CR (2011) Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout. Geophys Res Lett 38:L09602. https://doi.org/10.1029/2011GL047174

    Article  CAS  Google Scholar 

  • Spaulding M, Li Z, Mendelsohn D, Crowley D, French-McCay D, Bird A (2017) Application of an integrated blowout model system, OILMAP DEEP, to the Deepwater Horizon (DWH) spill. Mar Pollut Bull 120:37–50. https://doi.org/10.1016/j.marpolbul.2017.04.043

    Article  CAS  Google Scholar 

  • Valladares Juárez AG, Kadimesetty HS, Achatz DE, Schedler M, Müller R (2015) Online monitoring of crude oil biodegradation at elevated pressures. IEEE J Sel Top Appl Earth Obs Remote Sens 8:872–878

    Article  Google Scholar 

  • Vaz AC, Paris CBP, Dissanayake AL, Socolofsky SA, Gros J, Boufadel MC (2020) Dynamic coupling of near-field and far-field models (Chap. 9). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills – facts, fate and effects. Springer, Cham

    Google Scholar 

  • Wade T, Sericano JL, Sweet ST, Knap AH, Guinasso NL Jr (2016) Spatial and temporal distribution of water column total polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from the Deepwater Horizon (Macondo) incident. Mar Pollut Bull 103:286–293

    Article  CAS  Google Scholar 

  • Zhao L, Boufadel MC, Socolofsky SA, Adams E, King T, Lee K (2014) Evolution of droplets in subsea oil and gas blowouts: development and validation of the numerical model VDROP-J. Mar Pollut Bull 83:58–69

    Article  CAS  Google Scholar 

  • Zhao L, Boufadel MC, King T, Robinson B, Gao F, Socolofsky SA, Lee K (2017) Droplet and bubble formation of combined oil and gas releases in subsea blowouts. Mar Pollut Bull 120:203–216

    Article  CAS  Google Scholar 

  • Zheng L, Yapa PD, Chen FH (2003) A model for simulating deepwater oil and gas blowouts – Part I: theory and model formulation. J Hydraul Res 41:339–351

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by a grant from The Gulf of Mexico Research Initiative/C-IMAGE II to Steve Murawski. Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (doi: https://doi.org/10.7266/N7KD1WDB).

The authors are thankful to Matthieu Le Hénaff for the discussion on the wind drift effects and to Paul Bubenheim and Juan Viamonte for their insight into biodegradation laboratory experiments and studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Perlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perlin, N. et al. (2020). Far-Field Modeling of a Deep-Sea Blowout: Sensitivity Studies of Initial Conditions, Biodegradation, Sedimentation, and Subsurface Dispersant Injection on Surface Slicks and Oil Plume Concentrations. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_11

Download citation

Publish with us

Policies and ethics