Biomedical Applications: Liposomes and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering



Liposomes and supported lipid bilayers (SLBs) are having an increasing impact in designing new biomedical approaches owing to their cell-like structures and native biophysical environment. In particular, as membrane proteins are target of 60–70% of pharmaceutical drugs in the research and industry, liposomes and SLBs denote unique and versatile capabilities in membrane protein research compared to the conventional systems, which have significant challenges in handling membrane proteins without denaturation and loss of function. Besides, the integrations of liposomes and SLBs into micro- and nano-array format open new avenues to create biochip strategies for modern clinical use. In this chapter, we extensively review biomedical applications of liposomes and SLBs through (i) sensing strategy for diagnostics and (ii) theranostics and labelling capability for imaging, (iii) carrier roles for vaccines, and (iv) tissue engineering approaches for multiple cellular processes. Integrated strategies such as lithography and array formation will be also discussed here in order to envision the potential applications of liposomes and SLBs in the near future.


Immunoassays Point-of-care Bed-side testing Mobile health care Array systems Vaccines-Lipid carriers Regenerative medicine strategies 


  1. 1.
    O. Tokel, F. Inci, U. Demirci, Advances in plasmonic technologies for point of care applications. Chem. Rev. 114(11), 5728–5752 (2014)CrossRefGoogle Scholar
  2. 2.
    J.C. Mills, K.A. Roth, R.L. Cagan, J.I. Gordon, DNA microarrays and beyond: completing the journey from tissue to cell. Nat. Cell Biol. 3, E175 (2001)CrossRefGoogle Scholar
  3. 3.
    T.L. Tan, Y.Y. Goh, The role of group IIA secretory phospholipase A2 (sPLA2-IIA) as a biomarker for the diagnosis of sepsis and bacterial infection in adults-A systematic review. PLoSOne 12(7), e0180554 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Qu et al., Plasma phospholipase A2 activity may serve as a novel diagnostic biomarker for the diagnosis of breast cancer. Oncol. Lett. 15(4), 5236–5242 (2018)Google Scholar
  5. 5.
    C. Satriano, G. Lupo, C. Motta, C.D. Anfuso, P. Di Pietro, B. Kasemo, Ferritin-supported lipid bilayers for triggering the endothelial cell response. Colloids Surf B Biointerfaces 149, 48–55 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Aili, M. Mager, D. Roche, M.M. Stevens, Hybrid nanoparticle-liposome detection of phospholipase activity. NanoLett. 11, 1401 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Chapman et al., Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano 9, 2565 (2015)CrossRefGoogle Scholar
  8. 8.
    B. Lin et al., Enzyme-encapsulated liposome-linked immunosorbentassay enabling sensitive personal glucose meter readout for portable detection of disease biomarkers. ACS Appl. Mater. Interfaces 8(11), 6890–6897 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Soler, X. Li, A. John-Herpin, J. Schmidt, G. Coukos, H. Altug, Two-dimensional label-free affinity analysis of tumor-specific CD8 T cells with a biomimetic plasmonicsensor. ACS Sens 3(11), 2286–2295 (2018). CrossRefGoogle Scholar
  10. 10.
    N.J. Liu et al., Phospholipase A2 as a point of care alternative to serum amylase and pancreatic lipase. Nanoscale 8(23), 11834–11839 (2016)CrossRefGoogle Scholar
  11. 11.
    N.T. Thet, W.D. Jamieson, M. Laabei, J.D. Mercer-Chalmers, A.T.A. Jenkins, Photopolymerization of polydiacetylene in hybrid liposomes: effect of polymerization on stability and response to pathogenic bacterial toxins. J. Phys. Chem. B 118, 5418 (2014)CrossRefGoogle Scholar
  12. 12.
    G.L. Damhorst et al., A liposome-based ion release impedance sensor for biological detection. Biomed. Microdevices 15, 895 (2013)CrossRefGoogle Scholar
  13. 13.
    D. Stamou, C. Duschl, E. Delamarche, H. Vogel, Self-Assembled Microarrays of Attoliter Molecular Vessels. Angew. ChemInt. Ed.Engl 42(45), 5580–5583 (2003)CrossRefGoogle Scholar
  14. 14.
    F. Inci, U. Celik, B. Turken, H.Ö. Özer, F.N. Kok, Construction of P-glycoprotein incorporated tethered lipid bilayer membranes. Biochem.Biophys.Rep 2, 115 (2015)Google Scholar
  15. 15.
    C. Yoshina-Ishii, G.P. Miller, M.L. Kraft, E.T. Kool, S.G. Boxer, General method for modification of liposomes for encoded assembly on supported bilayers. J. Am. Chem. Soc. 127, 1356 (2005)CrossRefGoogle Scholar
  16. 16.
    B. Städler, M. Bally, D. Grieshaber, J. Vörös, A. Brisson, H.M. Grandin, Creation of a functional heterogeneous vesicle array via DNA controlled surface sorting onto a spotted microarray. Biointerphases 1, 142 (2006)CrossRefGoogle Scholar
  17. 17.
    M. Bally, K. Bailey, K. Sugihara, D. Grieshaber, J. Vörös, B. Stäler, Liposome and lipid bilayer arrays towards biosensing applications. Small 6, 2481 (2010)CrossRefGoogle Scholar
  18. 18.
    R. Michel et al., A novel approach to produce biologically relevant chemical patterns at the nanometer scale: Selective molecular assembly patterning combined with colloidal lithography. Langmuir 18, 8580 (2002)CrossRefGoogle Scholar
  19. 19.
    A. Ohradanova-Repic et al., Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomedicine 14, 123 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Mašek et al., Immobilization of histidine-tagged proteins on monodispersemetallochelation liposomes: preparation and study of their structure. Anal. Biochem. 408, 95 (2011)CrossRefGoogle Scholar
  21. 21.
    I. Stanish, J.P. Santos, A. Singh, One-step, chemisorbed immobilization of highly stable, polydiacetylenic phospholipid vesicles onto gold films [17]. J. Am. Chem. Soc. 123(5), 1008–1009 (2001)CrossRefGoogle Scholar
  22. 22.
    S. Svedhem, I. Pfeiffer, C. Larsson, C. Wingren, C. Borrebaeck, F. Höök, Patterns of DNA-labeled and scFv-antibody-carrying lipid vesicles directed by material-specific immobilization of DNA and supported lipid bilayer formation on an Au/SiO2 template. Chembiochem 4(4), 339–343 (2003)CrossRefGoogle Scholar
  23. 23.
    D. Falconnet, A. Koenig, F. Assi, M. Textor, A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences. Adv. Funct. Mater. 14, 749 (2004)CrossRefGoogle Scholar
  24. 24.
    M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs, A. Vijayaraghavan, Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat. Commun. 4(1), 2591 (2013)CrossRefGoogle Scholar
  25. 25.
    K. Bailey, M. Bally, W. Leifert, J. Vörös, T. McMurchie, G-protein coupled receptor array technologies: Site directed immobilisation of liposomes containing the H1-histamine or M2-muscarinic receptors. Proteomics 9, 2052 (2009)CrossRefGoogle Scholar
  26. 26.
    N. Vafai, T.W. Lowry, K.A. Wilson, M.W. Davidson, S. Lenhert, Evaporative edge lithography of a liposomal drug microarray for cell migration assays. Nanofabrication 2(1), 34–42 (2015)CrossRefGoogle Scholar
  27. 27.
    K. Pilnam et al., Supported lipid bilayers microarrays onto a surface and inside microfluidic channels, in Proceedings of 2006 International Conference on Microtechnologies in Medicine and Biology, (2006)Google Scholar
  28. 28.
    F.G. Zaugg, P. Wagner, Drop-on-demand printing of protein biochip arrays. MRS Bull. 28, 837 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Gavutis, V. Navikas, T. Rakickas, Š. Vaitekonis, R. Valiokas, Lipid dip-pen nanolithography on self-assembled monolayers. J. MicromechMicroeng 26, 025016 (2016)Google Scholar
  30. 30.
    M.A. Wood, Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J. R. Soc. Interface 4, 1 (2007)CrossRefGoogle Scholar
  31. 31.
    Y.K. Jung, T.W. Kim, H.G. Park, H.T. Soh, Specific colorimetric detection of proteins using bidentateaptamer-conjugated polydiacetylene (PDA) liposomes. Adv. Funct. Mater. 20, 3092 (2010)CrossRefGoogle Scholar
  32. 32.
    S. Seo, J. Lee, E.J. Choi, E.J. Kim, J.Y. Song, J. Kim, Polydiacetylene liposome microarray toward influenza A virus detection: effect of target size on turn-on signaling. Macromol. Rapid Commun. 34, 743 (2013)CrossRefGoogle Scholar
  33. 33.
    F. Mazur, M. Bally, B. Städler, R. Chandrawati, Liposomes and lipid bilayers in biosensors. Adv Colloid Interface Sci 249, 88 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Seo, M.S. Kwon, A.W. Phillips, D. Seo, J. Kim, Highly sensitive turn-on biosensors by regulating fluorescent dye assembly on liposome surfaces. Chem. Commun. 51, 10229 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Lee, J. Lee, D.W. Lee, J.M. Kim, H. Lee, A 3D networked polydiacetylene sensor for enhanced sensitivity. Chem. Commun. 52(5), 926–929 (2016)CrossRefGoogle Scholar
  36. 36.
    W.T. Al-Jamal, K. Kostarelos, Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranosticnanomedicine. Acc. Chem. Res. 44, 1094 (2011)CrossRefGoogle Scholar
  37. 37.
    L.B. Margolis, V.A. Namiot, L.M. Kljukin, Magnetoliposomes: another principle of cell sorting. BBA-Biomembranes 735, 193 (1983)CrossRefGoogle Scholar
  38. 38.
    R.V. Ferreira et al., Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy. Nanotechnology 27, 085105 (2016)CrossRefGoogle Scholar
  39. 39.
    C.E. Ashley et al., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10(5), 389–397 (2011)CrossRefGoogle Scholar
  40. 40.
    V.P. Torchilin, Liposomes as delivery agents for medical imaging. Mol. Med. Today 2, 242 (1996)CrossRefGoogle Scholar
  41. 41.
    V.P. Torchilin, Surface-modified liposomes in gamma- and MR-imaging. Adv Drug Delivery Rev 24, 301 (1997)CrossRefGoogle Scholar
  42. 42.
    C. Grange et al., Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res. 70, 2180 (2010)CrossRefGoogle Scholar
  43. 43.
    M. De Smet, E. Heijman, S. Langereis, N.M. Hijnen, H. Grüll, Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J. Control. Release 150(1), 102–110 (2011)CrossRefGoogle Scholar
  44. 44.
    B.L. Viglianti et al., In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn. Reson. Med. 51, 1153 (2004)CrossRefGoogle Scholar
  45. 45.
    A. Maiseyeu et al., Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J. Lipid Res. 50, 2157 (2009)CrossRefGoogle Scholar
  46. 46.
    M.E. Lobatto et al., Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol. Pharm. 7, 2020 (2010)CrossRefGoogle Scholar
  47. 47.
    C. Lahariya, Health system approach; for improving immunization program performance. J. Family. Med. Prim. Care 4(4), 487–494 (2015)CrossRefGoogle Scholar
  48. 48.
    G. Gregoriadis, Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol. 13, 527 (1995)CrossRefGoogle Scholar
  49. 49.
    D. Christensen, K.S. Korsholm, P. Andersen, E.M. Agger, Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines 10, 513 (2011)CrossRefGoogle Scholar
  50. 50.
    M.L. Immordino, F. Dosio, L. Cattel, Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 1(3), 297–315 (2006)CrossRefGoogle Scholar
  51. 51.
    A.K. Giddam, M. Zaman, M. Skwarczynski, I. Toth, Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine 7, 1877 (2012)CrossRefGoogle Scholar
  52. 52.
    F. Broecker et al., Synthesis, liposomal formulation, and immunological evaluation of a minimalistic Carbohydrate-α-GalCervaccine candidate. J. Med. Chem. 61, 4918 (2018)CrossRefGoogle Scholar
  53. 53.
    V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4(2), 145–160 (2005)CrossRefGoogle Scholar
  54. 54.
    H.H. Guan et al., Liposomal formulations of synthetic MUC1 peptides: effects of encapsulation versus surface display of peptides on immune responses. Bioconjug. Chem. 9, 451 (1998)CrossRefGoogle Scholar
  55. 55.
    G.G. Chikh, S. Kong, M.B. Bally, J.-C. Meunier, M.-P.M. Schutze-Redelmeier, Efficient delivery of antennapediahomeodomainfused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T Cells. J. Immunol. 167, 6462 (2001)CrossRefGoogle Scholar
  56. 56.
    G. Chikh, M.P. Schutze-Redelmeir, Liposomal delivery of CTL epitopes to dendritic cells. Biosci. Rep. 22, 339 (2002)CrossRefGoogle Scholar
  57. 57.
    M.J. Copland et al., Liposomal delivery of antigen to human dendritic cells. Vaccine 21(9-10), 883–890 (2003)CrossRefGoogle Scholar
  58. 58.
    R. Langer, J.P. Vacanti, Tissue engineering. Science 260(5110), 920–926 (1993)CrossRefGoogle Scholar
  59. 59.
    F.J. O’Brien, Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88 (2011)CrossRefGoogle Scholar
  60. 60.
    A. Atala, Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res. 7, 15 (2004)CrossRefGoogle Scholar
  61. 61.
    E.J. Lee, F.K. Kasper, A.G. Mikos, Biomaterials for Tissue Engineering. Ann. Biomed. Eng. 42(2), 323–337 (2014)CrossRefGoogle Scholar
  62. 62.
    J. Barthes, H. Ozcelik, M. Hindie, A. Ndreu-Halili, A. Hasan, N.E. Vrana, Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed. Res. Int. 2014, 921905 (2014)CrossRefGoogle Scholar
  63. 63.
    M.Ö. Öztürk Öncel, B. Garipcan, Stem cell behavior on microenvironment mimicked surfaces, in Advanced Surfaces for Stem Cell Research, Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Beverly, Massachusetts. Published simultaneously in Canada. (2016), pp. 425–452CrossRefGoogle Scholar
  64. 64.
    P.A. Smethurst et al., Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J. Biol. Chem. 282, 1296 (2007)CrossRefGoogle Scholar
  65. 65.
    R. Parenteau-Bareil, R. Gauvin, F. Berthod, Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 3, 1863 (2010)CrossRefGoogle Scholar
  66. 66.
    W.J. Kao, Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering. Biomaterials 20, 2213 (1999)CrossRefGoogle Scholar
  67. 67.
    U. Geißler, U. Hempel, C. Wolf, D. Scharnweber, H. Worch, K.W. Wenzel, Collagen type I-coating of Ti6A14V promotes adhesion of osteoblasts. J. Biomed. Mater. Res. 51, 752 (2000)CrossRefGoogle Scholar
  68. 68.
    A.E. Postlethwaite, J.M. Seyer, A.H. Kang, Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc. Natl. Acad. Sci. 75, 871 (1978)CrossRefGoogle Scholar
  69. 69.
    M.F. Goody, C.A. Henry, Dynamic interactions between cells and their extracellular matrix mediate embryonic development. Mol. Reprod. Dev. 77, 475 (2010)CrossRefGoogle Scholar
  70. 70.
    F. Rosso, A. Giordano, M. Barbarisi, A. Barbarisi, From Cell-ECM interactions to tissue engineering. J. Cell. Physiol. 199, 174 (2004)CrossRefGoogle Scholar
  71. 71.
    D. Wu, L. Wang, C. Mason, D. Goldberg, Association of beta 1 integrin with phosphotyrosine in growth cone filopodia. J. Neurosci. 16, 1470 (1996)CrossRefGoogle Scholar
  72. 72.
    T.D. Perez, W.J. Nelson, S.G. Boxer, L. Kam, E-cadherin tethered to micropatterned supported lipid bilayers as a model for cell adhesion. Langmuir 21, 11963 (2005)CrossRefGoogle Scholar
  73. 73.
    M. Lambert, F. Padilla, R.M. Mege, Immobilized dimers of N-cadherin-Fc chimera mimic cadherin-mediated cell contact formation: contribution of both outside-in and inside-out signals. J. Cell Sci. 113(Pt 12), 2207–2219 (2000)Google Scholar
  74. 74.
    K. Zobel, S.E. Choi, R. Minakova, M. Gocyla, A. Offenhausser, N-Cadherin modified lipid bilayers promote neural network formation and circuitry. Soft Matter 13(44), 8096–8107 (2017)CrossRefGoogle Scholar
  75. 75.
    M. Reber, R. Hindges, G. Lemke, Eph receptors and ephrin ligands in axon guidance. Adv. Exp. Med. Biol. 621, 32–49 (2007)CrossRefGoogle Scholar
  76. 76.
    R. Ghosh Moulick, G. Panaitov, L. Du, D. Mayer, A. Offenhausser, Neuronal adhesion and growth on nanopatterned EA5-POPC synthetic membranes. Nanoscale 10(11), 5295–5301 (2018)CrossRefGoogle Scholar
  77. 77.
    J.-M. Nam, P.M. Nair, R.M. Neve, J.W. Gray, J.T. Groves, A fluid membrane-based soluble ligand-display system for live-cell assays. Chembiochem 7(3), 436–440 (2006)CrossRefGoogle Scholar
  78. 78.
    J. van Weerd, M. Karperien, P. Jonkheijm, Supported lipid bilayers for the generation of dynamic cell-material interfaces. Adv. Healthc.Mater. 4(18), 2743–2779 (2015)CrossRefGoogle Scholar
  79. 79.
    G. Koçer, P. Jonkheijm, Guiding hMSCadhesion and differentiation on supported lipid bilayers. Adv. Healthc.Mater. 6(3), 1600862 (2017)CrossRefGoogle Scholar
  80. 80.
    L.A. Lautscham, C.Y. Lin, V. Auernheimer, C.A. Naumann, W.H. Goldmann, B. Fabry, Biomembrane-mimicking lipid bilayer system as a mechanically tunable cell substrate. Biomaterials 35, 3198 (2014)CrossRefGoogle Scholar
  81. 81.
    D.E. Minner, P. Rauch, J. Käs, C.A. Naumann, Polymer-tethered lipid multi-bilayers: abiomembrane-mimicking cell substrate to probe cellular mechano-sensing. Soft Matter 10, 1189 (2014)CrossRefGoogle Scholar
  82. 82.
    R. Glazier, K. Salaita, Supported lipid bilayer platforms to probe cell mechanobiology. Biochim.Biophys.ActaBiomembr. 1859, 1465 (2017)CrossRefGoogle Scholar
  83. 83.
    S.F. Evans, D. Docheva, A. Bernecker, C. Colnot, R.P. Richter, M.L. Knothe Tate, Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials 34, 1878 (2013)CrossRefGoogle Scholar
  84. 84.
    I.-C. Lee, Y.-C. Wu, Assembly of polyelectrolyte multilayer films on supported lipid bilayers to induce neural stem/progenitor cell differentiation into functional neurons. ACS Appl. Mater.Interfaces 6(16), 14439–14450 (2014)CrossRefGoogle Scholar
  85. 85.
    W. Hao et al., Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials 161, 106 (2018)CrossRefGoogle Scholar
  86. 86.
    D. Afanasenkau, A. Offenhäusser, Positively charged supported lipid bilayers as a biomimetic platform for neuronal cell culture. Langmuir 28(37), 13387–13394 (2012)CrossRefGoogle Scholar
  87. 87.
    S.-E. Choi, K. Greben, R. Wördenweber, A. Offenhäusser, Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture. Biointerphases 11(2), 021003 (2016)CrossRefGoogle Scholar
  88. 88.
    Y.K. Lee, H. Lee, J.M. Nam, Lipid-nanostructure hybrids and their applications in nanobiotechnology. NPG Asia Materials. 5, e48 (2013)CrossRefGoogle Scholar
  89. 89.
    J.S. Hovis, S.G. Boxer, Patterning barriers to lateral diffusion in supported lipid bilayer membranes by blotting and stamping. Langmuir 16(3), 894–897 (2000)CrossRefGoogle Scholar
  90. 90.
    R.N. Orth, M. Wu, D.A. Holowka, H.G. Craighead, B.A. Baird, Mast cell activation on patterned lipid bilayers of subcellular dimensions. Langmuir 19(5), 1599–1605 (2003)CrossRefGoogle Scholar
  91. 91.
    M. Wu, D. Holowka, H.G. Craighead, B. Baird, Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proc. Natl. Acad. Sci. 101(38), 13798–13803 (2004)CrossRefGoogle Scholar
  92. 92.
    D. Steffens, D.I. Braghirolli, N. Maurmann, P. Pranke, Update on the main use of biomaterials and techniques associated with tissue engineering. Drug Discov. Today 23, 1474 (2018)CrossRefGoogle Scholar
  93. 93.
    M. Parmaksiz, A. Dogan, S. Odabas, A.E. Elçin, Y.M. Elçin, Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed. Mater. 11, 022003 (2016)CrossRefGoogle Scholar
  94. 94.
    D.A. Taylor, L.C. Sampaio, Z. Ferdous, A.S. Gobin, L.J. Taite, Decellularized matrices in regenerative medicine. ActaBiomater. 74, 74 (2018)Google Scholar
  95. 95.
    S. Vafaei, S.R. Tabaei, V. Guneta, C. Choong, N.J. Cho, Hybrid biomimetic interfaces integrating supported lipid bilayers with decellularizedextracellular matrix components. Langmuir 34, 3507 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biomedical Engineering, Boğaziçi UniversityIstanbulTurkey
  2. 2.Department of RadiologyStanford University, School of Medicine, Canary Center at Stanford for Cancer Early DetectionPalo AltoUSA

Personalised recommendations