Skip to main content

Biomedical Applications: Liposomes and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering

  • Chapter
  • First Online:

Abstract

Liposomes and supported lipid bilayers (SLBs) are having an increasing impact in designing new biomedical approaches owing to their cell-like structures and native biophysical environment. In particular, as membrane proteins are target of 60–70% of pharmaceutical drugs in the research and industry, liposomes and SLBs denote unique and versatile capabilities in membrane protein research compared to the conventional systems, which have significant challenges in handling membrane proteins without denaturation and loss of function. Besides, the integrations of liposomes and SLBs into micro- and nano-array format open new avenues to create biochip strategies for modern clinical use. In this chapter, we extensively review biomedical applications of liposomes and SLBs through (i) sensing strategy for diagnostics and (ii) theranostics and labelling capability for imaging, (iii) carrier roles for vaccines, and (iv) tissue engineering approaches for multiple cellular processes. Integrated strategies such as lithography and array formation will be also discussed here in order to envision the potential applications of liposomes and SLBs in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O. Tokel, F. Inci, U. Demirci, Advances in plasmonic technologies for point of care applications. Chem. Rev. 114(11), 5728–5752 (2014)

    Article  CAS  Google Scholar 

  2. J.C. Mills, K.A. Roth, R.L. Cagan, J.I. Gordon, DNA microarrays and beyond: completing the journey from tissue to cell. Nat. Cell Biol. 3, E175 (2001)

    Article  CAS  Google Scholar 

  3. T.L. Tan, Y.Y. Goh, The role of group IIA secretory phospholipase A2 (sPLA2-IIA) as a biomarker for the diagnosis of sepsis and bacterial infection in adults-A systematic review. PLoSOne 12(7), e0180554 (2017)

    Article  CAS  Google Scholar 

  4. J. Qu et al., Plasma phospholipase A2 activity may serve as a novel diagnostic biomarker for the diagnosis of breast cancer. Oncol. Lett. 15(4), 5236–5242 (2018)

    Google Scholar 

  5. C. Satriano, G. Lupo, C. Motta, C.D. Anfuso, P. Di Pietro, B. Kasemo, Ferritin-supported lipid bilayers for triggering the endothelial cell response. Colloids Surf B Biointerfaces 149, 48–55 (2017)

    Article  CAS  Google Scholar 

  6. D. Aili, M. Mager, D. Roche, M.M. Stevens, Hybrid nanoparticle-liposome detection of phospholipase activity. NanoLett. 11, 1401 (2011)

    Article  CAS  Google Scholar 

  7. R. Chapman et al., Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano 9, 2565 (2015)

    Article  CAS  Google Scholar 

  8. B. Lin et al., Enzyme-encapsulated liposome-linked immunosorbentassay enabling sensitive personal glucose meter readout for portable detection of disease biomarkers. ACS Appl. Mater. Interfaces 8(11), 6890–6897 (2016)

    Article  CAS  Google Scholar 

  9. M. Soler, X. Li, A. John-Herpin, J. Schmidt, G. Coukos, H. Altug, Two-dimensional label-free affinity analysis of tumor-specific CD8 T cells with a biomimetic plasmonicsensor. ACS Sens 3(11), 2286–2295 (2018). https://doi.org/10.1021/acssensors.8b00523

    Article  CAS  Google Scholar 

  10. N.J. Liu et al., Phospholipase A2 as a point of care alternative to serum amylase and pancreatic lipase. Nanoscale 8(23), 11834–11839 (2016)

    Article  CAS  Google Scholar 

  11. N.T. Thet, W.D. Jamieson, M. Laabei, J.D. Mercer-Chalmers, A.T.A. Jenkins, Photopolymerization of polydiacetylene in hybrid liposomes: effect of polymerization on stability and response to pathogenic bacterial toxins. J. Phys. Chem. B 118, 5418 (2014)

    Article  CAS  Google Scholar 

  12. G.L. Damhorst et al., A liposome-based ion release impedance sensor for biological detection. Biomed. Microdevices 15, 895 (2013)

    Article  CAS  Google Scholar 

  13. D. Stamou, C. Duschl, E. Delamarche, H. Vogel, Self-Assembled Microarrays of Attoliter Molecular Vessels. Angew. ChemInt. Ed.Engl 42(45), 5580–5583 (2003)

    Article  CAS  Google Scholar 

  14. F. Inci, U. Celik, B. Turken, H.Ö. Özer, F.N. Kok, Construction of P-glycoprotein incorporated tethered lipid bilayer membranes. Biochem.Biophys.Rep 2, 115 (2015)

    Google Scholar 

  15. C. Yoshina-Ishii, G.P. Miller, M.L. Kraft, E.T. Kool, S.G. Boxer, General method for modification of liposomes for encoded assembly on supported bilayers. J. Am. Chem. Soc. 127, 1356 (2005)

    Article  CAS  Google Scholar 

  16. B. Städler, M. Bally, D. Grieshaber, J. Vörös, A. Brisson, H.M. Grandin, Creation of a functional heterogeneous vesicle array via DNA controlled surface sorting onto a spotted microarray. Biointerphases 1, 142 (2006)

    Article  CAS  Google Scholar 

  17. M. Bally, K. Bailey, K. Sugihara, D. Grieshaber, J. Vörös, B. Stäler, Liposome and lipid bilayer arrays towards biosensing applications. Small 6, 2481 (2010)

    Article  CAS  Google Scholar 

  18. R. Michel et al., A novel approach to produce biologically relevant chemical patterns at the nanometer scale: Selective molecular assembly patterning combined with colloidal lithography. Langmuir 18, 8580 (2002)

    Article  CAS  Google Scholar 

  19. A. Ohradanova-Repic et al., Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomedicine 14, 123 (2018)

    Article  CAS  Google Scholar 

  20. J. Mašek et al., Immobilization of histidine-tagged proteins on monodispersemetallochelation liposomes: preparation and study of their structure. Anal. Biochem. 408, 95 (2011)

    Article  CAS  Google Scholar 

  21. I. Stanish, J.P. Santos, A. Singh, One-step, chemisorbed immobilization of highly stable, polydiacetylenic phospholipid vesicles onto gold films [17]. J. Am. Chem. Soc. 123(5), 1008–1009 (2001)

    Article  CAS  Google Scholar 

  22. S. Svedhem, I. Pfeiffer, C. Larsson, C. Wingren, C. Borrebaeck, F. Höök, Patterns of DNA-labeled and scFv-antibody-carrying lipid vesicles directed by material-specific immobilization of DNA and supported lipid bilayer formation on an Au/SiO2 template. Chembiochem 4(4), 339–343 (2003)

    Article  CAS  Google Scholar 

  23. D. Falconnet, A. Koenig, F. Assi, M. Textor, A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences. Adv. Funct. Mater. 14, 749 (2004)

    Article  CAS  Google Scholar 

  24. M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs, A. Vijayaraghavan, Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat. Commun. 4(1), 2591 (2013)

    Article  CAS  Google Scholar 

  25. K. Bailey, M. Bally, W. Leifert, J. Vörös, T. McMurchie, G-protein coupled receptor array technologies: Site directed immobilisation of liposomes containing the H1-histamine or M2-muscarinic receptors. Proteomics 9, 2052 (2009)

    Article  CAS  Google Scholar 

  26. N. Vafai, T.W. Lowry, K.A. Wilson, M.W. Davidson, S. Lenhert, Evaporative edge lithography of a liposomal drug microarray for cell migration assays. Nanofabrication 2(1), 34–42 (2015)

    Article  Google Scholar 

  27. K. Pilnam et al., Supported lipid bilayers microarrays onto a surface and inside microfluidic channels, in Proceedings of 2006 International Conference on Microtechnologies in Medicine and Biology, (2006)

    Google Scholar 

  28. F.G. Zaugg, P. Wagner, Drop-on-demand printing of protein biochip arrays. MRS Bull. 28, 837 (2003)

    Article  CAS  Google Scholar 

  29. M. Gavutis, V. Navikas, T. Rakickas, Š. Vaitekonis, R. Valiokas, Lipid dip-pen nanolithography on self-assembled monolayers. J. MicromechMicroeng 26, 025016 (2016)

    Google Scholar 

  30. M.A. Wood, Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J. R. Soc. Interface 4, 1 (2007)

    Article  CAS  Google Scholar 

  31. Y.K. Jung, T.W. Kim, H.G. Park, H.T. Soh, Specific colorimetric detection of proteins using bidentateaptamer-conjugated polydiacetylene (PDA) liposomes. Adv. Funct. Mater. 20, 3092 (2010)

    Article  CAS  Google Scholar 

  32. S. Seo, J. Lee, E.J. Choi, E.J. Kim, J.Y. Song, J. Kim, Polydiacetylene liposome microarray toward influenza A virus detection: effect of target size on turn-on signaling. Macromol. Rapid Commun. 34, 743 (2013)

    Article  CAS  Google Scholar 

  33. F. Mazur, M. Bally, B. Städler, R. Chandrawati, Liposomes and lipid bilayers in biosensors. Adv Colloid Interface Sci 249, 88 (2017)

    Article  CAS  Google Scholar 

  34. S. Seo, M.S. Kwon, A.W. Phillips, D. Seo, J. Kim, Highly sensitive turn-on biosensors by regulating fluorescent dye assembly on liposome surfaces. Chem. Commun. 51, 10229 (2015)

    Article  CAS  Google Scholar 

  35. S. Lee, J. Lee, D.W. Lee, J.M. Kim, H. Lee, A 3D networked polydiacetylene sensor for enhanced sensitivity. Chem. Commun. 52(5), 926–929 (2016)

    Article  CAS  Google Scholar 

  36. W.T. Al-Jamal, K. Kostarelos, Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranosticnanomedicine. Acc. Chem. Res. 44, 1094 (2011)

    Article  CAS  Google Scholar 

  37. L.B. Margolis, V.A. Namiot, L.M. Kljukin, Magnetoliposomes: another principle of cell sorting. BBA-Biomembranes 735, 193 (1983)

    Article  CAS  Google Scholar 

  38. R.V. Ferreira et al., Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy. Nanotechnology 27, 085105 (2016)

    Article  CAS  Google Scholar 

  39. C.E. Ashley et al., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10(5), 389–397 (2011)

    Article  CAS  Google Scholar 

  40. V.P. Torchilin, Liposomes as delivery agents for medical imaging. Mol. Med. Today 2, 242 (1996)

    Article  CAS  Google Scholar 

  41. V.P. Torchilin, Surface-modified liposomes in gamma- and MR-imaging. Adv Drug Delivery Rev 24, 301 (1997)

    Article  CAS  Google Scholar 

  42. C. Grange et al., Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res. 70, 2180 (2010)

    Article  CAS  Google Scholar 

  43. M. De Smet, E. Heijman, S. Langereis, N.M. Hijnen, H. Grüll, Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J. Control. Release 150(1), 102–110 (2011)

    Article  CAS  Google Scholar 

  44. B.L. Viglianti et al., In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn. Reson. Med. 51, 1153 (2004)

    Article  CAS  Google Scholar 

  45. A. Maiseyeu et al., Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J. Lipid Res. 50, 2157 (2009)

    Article  CAS  Google Scholar 

  46. M.E. Lobatto et al., Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol. Pharm. 7, 2020 (2010)

    Article  CAS  Google Scholar 

  47. C. Lahariya, Health system approach; for improving immunization program performance. J. Family. Med. Prim. Care 4(4), 487–494 (2015)

    Article  Google Scholar 

  48. G. Gregoriadis, Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol. 13, 527 (1995)

    Article  CAS  Google Scholar 

  49. D. Christensen, K.S. Korsholm, P. Andersen, E.M. Agger, Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines 10, 513 (2011)

    Article  CAS  Google Scholar 

  50. M.L. Immordino, F. Dosio, L. Cattel, Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 1(3), 297–315 (2006)

    Article  CAS  Google Scholar 

  51. A.K. Giddam, M. Zaman, M. Skwarczynski, I. Toth, Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine 7, 1877 (2012)

    Article  CAS  Google Scholar 

  52. F. Broecker et al., Synthesis, liposomal formulation, and immunological evaluation of a minimalistic Carbohydrate-α-GalCervaccine candidate. J. Med. Chem. 61, 4918 (2018)

    Article  CAS  Google Scholar 

  53. V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4(2), 145–160 (2005)

    Article  CAS  Google Scholar 

  54. H.H. Guan et al., Liposomal formulations of synthetic MUC1 peptides: effects of encapsulation versus surface display of peptides on immune responses. Bioconjug. Chem. 9, 451 (1998)

    Article  CAS  Google Scholar 

  55. G.G. Chikh, S. Kong, M.B. Bally, J.-C. Meunier, M.-P.M. Schutze-Redelmeier, Efficient delivery of antennapediahomeodomainfused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T Cells. J. Immunol. 167, 6462 (2001)

    Article  CAS  Google Scholar 

  56. G. Chikh, M.P. Schutze-Redelmeir, Liposomal delivery of CTL epitopes to dendritic cells. Biosci. Rep. 22, 339 (2002)

    Article  CAS  Google Scholar 

  57. M.J. Copland et al., Liposomal delivery of antigen to human dendritic cells. Vaccine 21(9-10), 883–890 (2003)

    Article  CAS  Google Scholar 

  58. R. Langer, J.P. Vacanti, Tissue engineering. Science 260(5110), 920–926 (1993)

    Article  CAS  Google Scholar 

  59. F.J. O’Brien, Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88 (2011)

    Article  CAS  Google Scholar 

  60. A. Atala, Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res. 7, 15 (2004)

    Article  Google Scholar 

  61. E.J. Lee, F.K. Kasper, A.G. Mikos, Biomaterials for Tissue Engineering. Ann. Biomed. Eng. 42(2), 323–337 (2014)

    Article  Google Scholar 

  62. J. Barthes, H. Ozcelik, M. Hindie, A. Ndreu-Halili, A. Hasan, N.E. Vrana, Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed. Res. Int. 2014, 921905 (2014)

    Article  CAS  Google Scholar 

  63. M.Ö. Öztürk Öncel, B. Garipcan, Stem cell behavior on microenvironment mimicked surfaces, in Advanced Surfaces for Stem Cell Research, Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Beverly, Massachusetts. Published simultaneously in Canada. (2016), pp. 425–452

    Chapter  Google Scholar 

  64. P.A. Smethurst et al., Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J. Biol. Chem. 282, 1296 (2007)

    Article  CAS  Google Scholar 

  65. R. Parenteau-Bareil, R. Gauvin, F. Berthod, Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 3, 1863 (2010)

    Article  CAS  Google Scholar 

  66. W.J. Kao, Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering. Biomaterials 20, 2213 (1999)

    Article  CAS  Google Scholar 

  67. U. Geißler, U. Hempel, C. Wolf, D. Scharnweber, H. Worch, K.W. Wenzel, Collagen type I-coating of Ti6A14V promotes adhesion of osteoblasts. J. Biomed. Mater. Res. 51, 752 (2000)

    Article  Google Scholar 

  68. A.E. Postlethwaite, J.M. Seyer, A.H. Kang, Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc. Natl. Acad. Sci. 75, 871 (1978)

    Article  CAS  Google Scholar 

  69. M.F. Goody, C.A. Henry, Dynamic interactions between cells and their extracellular matrix mediate embryonic development. Mol. Reprod. Dev. 77, 475 (2010)

    Article  CAS  Google Scholar 

  70. F. Rosso, A. Giordano, M. Barbarisi, A. Barbarisi, From Cell-ECM interactions to tissue engineering. J. Cell. Physiol. 199, 174 (2004)

    Article  CAS  Google Scholar 

  71. D. Wu, L. Wang, C. Mason, D. Goldberg, Association of beta 1 integrin with phosphotyrosine in growth cone filopodia. J. Neurosci. 16, 1470 (1996)

    Article  CAS  Google Scholar 

  72. T.D. Perez, W.J. Nelson, S.G. Boxer, L. Kam, E-cadherin tethered to micropatterned supported lipid bilayers as a model for cell adhesion. Langmuir 21, 11963 (2005)

    Article  CAS  Google Scholar 

  73. M. Lambert, F. Padilla, R.M. Mege, Immobilized dimers of N-cadherin-Fc chimera mimic cadherin-mediated cell contact formation: contribution of both outside-in and inside-out signals. J. Cell Sci. 113(Pt 12), 2207–2219 (2000)

    CAS  Google Scholar 

  74. K. Zobel, S.E. Choi, R. Minakova, M. Gocyla, A. Offenhausser, N-Cadherin modified lipid bilayers promote neural network formation and circuitry. Soft Matter 13(44), 8096–8107 (2017)

    Article  CAS  Google Scholar 

  75. M. Reber, R. Hindges, G. Lemke, Eph receptors and ephrin ligands in axon guidance. Adv. Exp. Med. Biol. 621, 32–49 (2007)

    Article  Google Scholar 

  76. R. Ghosh Moulick, G. Panaitov, L. Du, D. Mayer, A. Offenhausser, Neuronal adhesion and growth on nanopatterned EA5-POPC synthetic membranes. Nanoscale 10(11), 5295–5301 (2018)

    Article  CAS  Google Scholar 

  77. J.-M. Nam, P.M. Nair, R.M. Neve, J.W. Gray, J.T. Groves, A fluid membrane-based soluble ligand-display system for live-cell assays. Chembiochem 7(3), 436–440 (2006)

    Article  CAS  Google Scholar 

  78. J. van Weerd, M. Karperien, P. Jonkheijm, Supported lipid bilayers for the generation of dynamic cell-material interfaces. Adv. Healthc.Mater. 4(18), 2743–2779 (2015)

    Article  CAS  Google Scholar 

  79. G. Koçer, P. Jonkheijm, Guiding hMSCadhesion and differentiation on supported lipid bilayers. Adv. Healthc.Mater. 6(3), 1600862 (2017)

    Article  CAS  Google Scholar 

  80. L.A. Lautscham, C.Y. Lin, V. Auernheimer, C.A. Naumann, W.H. Goldmann, B. Fabry, Biomembrane-mimicking lipid bilayer system as a mechanically tunable cell substrate. Biomaterials 35, 3198 (2014)

    Article  CAS  Google Scholar 

  81. D.E. Minner, P. Rauch, J. Käs, C.A. Naumann, Polymer-tethered lipid multi-bilayers: abiomembrane-mimicking cell substrate to probe cellular mechano-sensing. Soft Matter 10, 1189 (2014)

    Article  CAS  Google Scholar 

  82. R. Glazier, K. Salaita, Supported lipid bilayer platforms to probe cell mechanobiology. Biochim.Biophys.ActaBiomembr. 1859, 1465 (2017)

    Article  CAS  Google Scholar 

  83. S.F. Evans, D. Docheva, A. Bernecker, C. Colnot, R.P. Richter, M.L. Knothe Tate, Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials 34, 1878 (2013)

    Article  CAS  Google Scholar 

  84. I.-C. Lee, Y.-C. Wu, Assembly of polyelectrolyte multilayer films on supported lipid bilayers to induce neural stem/progenitor cell differentiation into functional neurons. ACS Appl. Mater.Interfaces 6(16), 14439–14450 (2014)

    Article  CAS  Google Scholar 

  85. W. Hao et al., Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials 161, 106 (2018)

    Article  CAS  Google Scholar 

  86. D. Afanasenkau, A. Offenhäusser, Positively charged supported lipid bilayers as a biomimetic platform for neuronal cell culture. Langmuir 28(37), 13387–13394 (2012)

    Article  CAS  Google Scholar 

  87. S.-E. Choi, K. Greben, R. Wördenweber, A. Offenhäusser, Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture. Biointerphases 11(2), 021003 (2016)

    Article  CAS  Google Scholar 

  88. Y.K. Lee, H. Lee, J.M. Nam, Lipid-nanostructure hybrids and their applications in nanobiotechnology. NPG Asia Materials. 5, e48 (2013)

    Article  CAS  Google Scholar 

  89. J.S. Hovis, S.G. Boxer, Patterning barriers to lateral diffusion in supported lipid bilayer membranes by blotting and stamping. Langmuir 16(3), 894–897 (2000)

    Article  CAS  Google Scholar 

  90. R.N. Orth, M. Wu, D.A. Holowka, H.G. Craighead, B.A. Baird, Mast cell activation on patterned lipid bilayers of subcellular dimensions. Langmuir 19(5), 1599–1605 (2003)

    Article  CAS  Google Scholar 

  91. M. Wu, D. Holowka, H.G. Craighead, B. Baird, Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proc. Natl. Acad. Sci. 101(38), 13798–13803 (2004)

    Article  CAS  Google Scholar 

  92. D. Steffens, D.I. Braghirolli, N. Maurmann, P. Pranke, Update on the main use of biomaterials and techniques associated with tissue engineering. Drug Discov. Today 23, 1474 (2018)

    Article  CAS  Google Scholar 

  93. M. Parmaksiz, A. Dogan, S. Odabas, A.E. Elçin, Y.M. Elçin, Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed. Mater. 11, 022003 (2016)

    Article  CAS  Google Scholar 

  94. D.A. Taylor, L.C. Sampaio, Z. Ferdous, A.S. Gobin, L.J. Taite, Decellularized matrices in regenerative medicine. ActaBiomater. 74, 74 (2018)

    CAS  Google Scholar 

  95. S. Vafaei, S.R. Tabaei, V. Guneta, C. Choong, N.J. Cho, Hybrid biomimetic interfaces integrating supported lipid bilayers with decellularizedextracellular matrix components. Langmuir 34, 3507 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bora Garipcan or Fatih Inci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Öztürk Öncel, M.Ö., Garipcan, B., Inci, F. (2019). Biomedical Applications: Liposomes and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering. In: Kök, F., Arslan Yildiz, A., Inci, F. (eds) Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-030-11596-8_8

Download citation

Publish with us

Policies and ethics