Skip to main content

Applications of Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants and Environmental Pollutants

  • Chapter
  • First Online:
  • 752 Accesses

Abstract

The exploitation of lipid membranes in biosensors has provided the ability to reconstitute a considerable part of their functionality to detect trace of food toxicants and environmental pollutants. Nanotechnology enabled sensor miniaturization and extended the range of biological moieties that could be immobilized within a lipid bilayer device. This chapter reviews recent progress in biosensor technologies suitable for environmental applications and food quality monitoring. Numerous biosensing applications are presented, putting emphasis on novel systems, new sensing techniques, and nanotechnology-based transduction schemes. The range of analytes that can be currently detected include phenols, insecticides, pesticides, herbicides, heavy metals, toxins, allergens, antibiotics, microorganisms, hormones, dioxins, genetically modified foods, etc. Technology limitations and future prospects are discussed, focused on the commercialization capabilities of the proposed sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Mueller, D. O. Rudin, H. T. Tien, W. C. Wescott, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962)

    Article  CAS  Google Scholar 

  2. H. T. Tien, Z. Salamon, Formation of self-assembled lipid bilayers on solid substrates. J. Electroanal. Chem. Interfacial Electrochem. 22, 211–218 (1989)

    Article  CAS  Google Scholar 

  3. G.-P. Nikoleli, D. Nikolelis, C. G. Siontorou, S. Karapetis, Lipid membrane nanosensors for environmental monitoring: The art, the opportunities, and the challenges. Sensors 18(1), 284 (2018)

    Article  Google Scholar 

  4. D.P. Nikolelis, C.G. Siontorou, U.J. Krull, P.L. Katrivanos, Ammonium ion minisensors from self-assembled bilayer lipid membranes using gramicidin as an ionophore. Modulation of ammonium selectivity by platelet-activating factor. Anal. Chem. 15, 1735–1741 (1996)

    Article  Google Scholar 

  5. C.G. Siontorou, D.P. Nikolelis, U.J. Krull, K.L. Chiang, A triazine herbicide minisensor based on surface-stabilized bilayer lipid membranes. Anal. Chem. 69, 3109–3114 (1997)

    Article  CAS  Google Scholar 

  6. T. Hianik, J. Dlugopolsky, M. Gyepessova, Electrostriction of lipid bilayers on a solid support. Influence of hydrocarbon solvent and d.c. voltage. Bioelectrochem. Bioenerg. 31, 99–111 (1993)

    Article  CAS  Google Scholar 

  7. T. Hianik, V.I. Passechnik, D.F. Sargent, J. Dlugopolsky, L. Sokolikova, Surface potentials and solvent redistribution may explain the dependence of electrical and mechanical properties of supported lipid bilayers on applied potential and bilayer history. Bioelectrochem. Bioenerg. 37, 61–68 (1995)

    Article  CAS  Google Scholar 

  8. V.I. Passechnik, T. Hianik, S.A. Ivanov, B. Sivak, Specific capacitance of metal supported lipid membranes. Electroanalysis 10, 295–302 (1998)

    Article  CAS  Google Scholar 

  9. D.P. Nikolelis, C.G. Siontorou, V.G. Andreou, U.J. Krull, Stabilized bilayer-lipid membranes for flow-through experiments. Electroanalysis 7, 531–536 (1995)

    Article  CAS  Google Scholar 

  10. V.G. Andreou, D.P. Nikolelis, Flow injection monitoring of aflatoxin M1 in milk and milk preparations using filter-supported bilayer lipid membranes. Anal. Chem. 70, 2366–2371 (1998)

    Article  CAS  Google Scholar 

  11. D. P. Nikolelis, G. Raftopoulou, G.-P. Nikoleli, M. Simantiraki, Stabilized lipid membrane based biosensors with incorporated enzyme for repetitive uses. Electroanalysis 18, 2467–2474 (2006)

    Article  CAS  Google Scholar 

  12. D.P. Nikolelis, G. Raftopoulou, P. Chatzigeorgiou, G.-P. Nikoleli, K. Viras, Optical portable biosensors based on stabilized lipid membrane for the rapid detection of doping materials in human urine. Sens. Actuators B Chem. 130, 577–582 (2008)

    Article  CAS  Google Scholar 

  13. G.-P. Nikoleli, M.Q. Israr, N. Tzamtzis, D.P. Nikolelis, M. Willander, N. Psaroudakis, Structural characterization of graphene nanosheets for miniaturization of potentiometric urea lipid film based biosensors. Electroanalysis 24, 1285–1295 (2012)

    Article  CAS  Google Scholar 

  14. S. Bratakou, G.-P. Nikoleli, D.P. Nikolelis, N. Psaroudakis, Development of a potentiometric chemical sensor for the rapid detection of carbofuran based on air stable lipid films with incorporated calix[4]arene phosphoryl receptor using graphene electrodes. Electroanalysis 27, 2608–2613 (2015)

    Article  CAS  Google Scholar 

  15. S. Bratakou, G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, N. Tzamtzis, Electrochemical biosensor for naphthalene acetic acid in fruits and vegetables based on lipid films with incorporated auxin-binding protein receptor using graphene electrodes. Electroanalysis 28, 2171–2177 (2016)

    Article  CAS  Google Scholar 

  16. S. Karapetis, G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, N. Tzamtzis, N. Psaroudakis, Development of an electrochemical biosensor for the rapid detection of cholera toxin based on air stable lipid films with incorporated ganglioside GM1 using graphene electrodes. Electroanalysis 28, 1584–1590 (2016)

    Article  CAS  Google Scholar 

  17. S. Bratakou, G.-P. Nikoleli, G.C. Siontorou, D.P. Nikolelis, S. Karapetis, N. Tzamtzis, Development of an electrochemical biosensor for the rapid detection of saxitoxin based on air stable lipid films with incorporated Anti-STX using graphene electrodes. Electroanalysis 29, 990–997 (2017)

    Article  CAS  Google Scholar 

  18. D.P. Nikolelis, M. Simantiraki, G.C. Siontorou, K. Toth, Flow injection analysis of carbofuran in foods using air stable lipid film based acetylcholinesterase biosensor. Anal. Chim. Acta 537, 169–177 (2005)

    Article  CAS  Google Scholar 

  19. D.P. Nikolelis, G. Raftopoulou, M. Simantiraki, N. Psaroudakis, G.-P. Nikoleli, T. Hianik, Preparation of a selective receptor for carbofuran for the development of a simple optical spot test for its rapid detection using stabilized in air lipid films with incorporated receptor. Anal. Chim. Acta 620, 134–141 (2008)

    Article  CAS  Google Scholar 

  20. D.P. Nikolelis, N. Ntanos, G.-P. Nikoleli, K. Tampouris, Development of an electrochemical biosensor for the rapid detection of naphthalene acetic acid in fruits by using air stable lipid films with incorporated auxin-binding protein 1 receptor. Protein Pept. Lett. 15, 789–794 (2008)

    Article  CAS  Google Scholar 

  21. S. Bratakou, G.-P. Nikoleli, C.G. Siontorou, S. Karapetis, D.P. Nikolelis, N. Tzamtzis, Electrochemical biosensor for naphthalene acetic acid in fruits and vegetables based on lipid films with incorporated auxin-binding protein receptor using graphene electrodes. Electroanalysis 28, 2171–2177 (2016)

    Article  CAS  Google Scholar 

  22. G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, S. Bratakou, S. Karapetis, N. Tzamtzis, Biosensors based on lipid modified graphene microelectrodes. Carbon 3(1), 9 (2017). https://doi.org/10.3390/c3010009

    Article  CAS  Google Scholar 

  23. D.P. Nikolelis, G. Raftopoulou, N. Psaroudakis, G.-P. Nikoleli, Development of an electrochemical chemosensor for the rapid detection of zinc based on air stable lipid films with incorporated calix4arene phosphoryl receptor. Int. J. Environ. Anal. Chem. 89, 211–222 (2009)

    Article  CAS  Google Scholar 

  24. D.P. Nikolelis, V.G. Andreou, Electrochemical transduction of interactions of atrazine with bilayer lipid membranes. Electroanalysis 8, 643–647 (2005)

    Article  Google Scholar 

  25. D.P. Nikolelis, C.G. Siontorou, Flow injection monitoring and analysis of mixtures of simazine, atrazine, and propazine using filter-supported bilayer lipid membranes (BLMs). Electroanalysis 8, 907–912 (1996)

    Article  CAS  Google Scholar 

  26. C.G. Siontorou, D.P. Nikolelis, B. Tarus, J. Dumbrava, U.J. Krull, DNA biosensor based on self-assembled bilayer lipid membranes for the detection of hydrazines. Electroanalysis 10, 691–694 (1998)

    Article  CAS  Google Scholar 

  27. G.-P. Nikoleli, D.P. Nikolelis, N. Tzamtzis, Development of an electrochemical biosensor for the rapid detection of cholera toxin using air stable lipid films with incorporated ganglioside GM1. Electroanalysis 23(9), 2182–2189 (2011)

    Article  CAS  Google Scholar 

  28. A.I. Michaloliakos, G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, Rapid flow injection electrochemical detection of aroclor 1242 using stabilized lipid membranes with incorporated sheep anti-PCB antibody. Electroanalysis 24, 495–501 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios P. Nikolelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikoleli, GP., Nikolelis, D.P., Siontorou, C.G., Nikolelis, MT., Karapetis, S. (2019). Applications of Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants and Environmental Pollutants. In: Kök, F., Arslan Yildiz, A., Inci, F. (eds) Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-030-11596-8_12

Download citation

Publish with us

Policies and ethics