Skip to main content

Geometry-Based Classification for Automated Schizophrenia Diagnosis

  • Chapter
  • First Online:
Research in Data Science

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 17))

  • 793 Accesses

Abstract

The improvement in medical imaging technologies has increased demand for automated diagnosis methodologies. In this paper, we propose a method for automated diagnosis of schizophrenia based on features extracted from segmented boundaries of the lateral projection of MRI images of the corpus callosum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Department of Health and National Institute of Mental Health Human Services, National Institutes of Health, Nimh schizophrenia. https://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml. Accessed May 2017

  2. M. Gheiratmand, I. Rish, G.A. Cecchi, M.R.G. Brown, R. Greiner, P.I. Polosecki, P. Bashivan, A.J. Greenshaw, R. Ramasubbu, S.M. Dursun, Learning stable and predictive network-based patterns of schizophrenia and its clinical symptoms. Schizophrenia 3, 22 (2017)

    Article  Google Scholar 

  3. J.R. Highley, M.M. Esiri, B. McDonald, M. Cortina-Borja, B.M. Herron, T.J. Crow, The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 122, 99–110 (1999)

    Article  Google Scholar 

  4. P. Thompson, K. Narr, R. Blanton, A. Toga, Mapping structural alterations of the corpus callosum during brain development and degeneration, in The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum (MIT Press, Cambridge MA, 2003), pp. 93–130

    Google Scholar 

  5. J. Clarke, E. Zaidel, Anatomical-behavioral relationships: corpus callosum morphometry and hemispheric specialization. Behav. Brain Res. 64(1–2), 185–202 (1994)

    Article  Google Scholar 

  6. J. Rajapakse, J. Giedd, J. Rumsey, A. Vaituzis, S. Hamburger, J. Rapoport, Regional MRI measurements of the corpus callosum: a methodological and developmental study. Brain Dev. 18(5), 379–388 (1996)

    Article  Google Scholar 

  7. S. Witelson, Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain 112(3), 799–3835 (1996)

    Article  Google Scholar 

  8. E. Luders, P. Thompson, K. Narr, A. Zamanyan, Y. Chou, B. Gutman, I. Dinov, A. Toga, The link between callosal thickness and intelligence in healthy children and adolescents. Neuroimage 54, 1823–1830 (2011)

    Article  Google Scholar 

  9. S. Joshi, K.L.H. Narr, O.R. Philips, K.H. Nuechterlein, R.F. Asarnow, A.W. Toga, R.P. Woods, Statistical shape analysis of the corpus callosum in schizophrenia. NeuroImage 64, 547–559 (2013)

    Article  Google Scholar 

  10. C.Y. Wan, G. Schlaug, Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 16, 566–577 (2010)

    Article  Google Scholar 

  11. H. Blum, A transformation for extracting new descriptors of shape, in Models for the Perception of Speech and Visual Form, ed. by W. Whaten-Dunn (MIT Press, Cambridge MA, 1967), pp. 362–380

    Google Scholar 

  12. P.J. Giblin, B.B. Kimia, On the local form and transitions of symmetry sets, medial axes, and shocks. Int. J. Comput. Vis. 54(1–3), 143–157 (2003)

    Article  Google Scholar 

  13. K. Leonard, Efficient shape modeling: epsilon-entropy, adaptive coding, and boundary curves -vs- Blum’s medial axis. Int. J. Comput. Vis. 74(2), 183–199 (2007)

    Article  Google Scholar 

  14. T.K. Dey, W. Zhao, Approximating the medial axis from the Voronoi diagram with a convergence guarantee. Algorithmica 38(1), 179–200 (2003)

    Article  MathSciNet  Google Scholar 

  15. L. Liu, E.W. Chambers, D. Letscher, T. Ju, Extended grassfire transform on medial axes of 2d shapes. Comput. Aided Des. 43(11), 1496–1505 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shantanu Joshi and Katherine Narr at UCLA for the data and the problem. NSF IIS-0954256 provided support during the initial phase of this project. Finally, we would like to thank the Association for Women in Mathematics and NSF (NSF-HRD 1500481) and ICERM for supporting the Women in the Science of Mathematics and Data collaboration workshop.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aroutiounian, R., Leonard, K., Moreno, R., Teufel, R. (2019). Geometry-Based Classification for Automated Schizophrenia Diagnosis. In: Gasparovic, E., Domeniconi, C. (eds) Research in Data Science. Association for Women in Mathematics Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-11566-1_9

Download citation

Publish with us

Policies and ethics