Skip to main content

Robustness of Delayed Multistable Systems

  • 382 Accesses

Part of the Advances in Delays and Dynamics book series (ADVSDD,volume 10)

Abstract

In this chapter sufficient conditions for input-to-state stability (ISS) of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in the feedback path. First, the approach is illustrated by establishing the ISS property for the model of a nonlinear pendulum, then delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of a nonlinear pendulum, and corresponding delay-dependent conditions for asymptotic phase-locking are derived for an exemplary microgrid consisting of two droop-controlled inverters.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-11554-8_6
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-11554-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1

Notes

  1. 1.

    The overall delay reduces to \(\tau =1.5T_{S}\) if no moving average function for the measurement is used [29].

References

  1. Angeli, D.: An almost global notion of input-to-state stability. IEEE Trans. Autom. Control 49, 866–874 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. D. Angeli, D. Efimov, On input-to-state stability with respect to decomposable invariant sets. In: Proceedings of 52nd IEEE Conference on Decision and Control, Florence (2013)

    Google Scholar 

  3. D. Angeli, D. Efimov, Characterizations of input-to-state stability for systems with multiple invariant sets. IEEE Trans. Autom. Control PP(99), 1–13 (2015)

    Google Scholar 

  4. Angeli, D., Ferrell, J., Sontag, E.: Detection of multistability, bifurcations and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 101, 1822–1827 (2004)

    CrossRef  Google Scholar 

  5. Angeli, D., Praly, L.: Stability robustness in the presence of exponentially unstable isolated equilibria. IEEE Trans. Autom. Control 56, 1582–1592 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. M. Chandorkar, D. Divan, and R. Adapa. Control of parallel connected inverters in stand-alone AC supply systems. IEEE Trans. Ind. Appl. 29(1), 136 –143 (1993)

    CrossRef  Google Scholar 

  7. Chaves, M., Eissing, T., Allgower, F.: Bistable biological systems: a characterization through local compact input-to-state stability. IEEE Trans. Autom. Control 45, 87–100 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Dashkovskiy, S., Efimov, D., Sontag, E.: Input to state stability and allied system properties. Autom. Remote Control 72(8), 1579–1614 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. S. Dashkovskiy, L. Naujok, Lyapunov-Razumikhin and Lyapunov-Krasovskii theorems for interconnected ISS time-delay systems. In: Proceedings of 19th International Symposium on Mathematical Theory of Networks and Systems(MTNS), pp. 1179–1184, Budapest (2010)

    Google Scholar 

  10. Efimov, D., Fradkov, A.: Oscillatority of nonlinear systems with static feedback. SIAM J. Optim. Control 48(2), 618–640 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. D. Efimov, R. Ortega, J. Schiffer, ISS of multistable systems with delays: application to droop-controlled inverter-based microgrids. In: Proceedings of ACC 2015, Chicago (2015)

    Google Scholar 

  12. Efimov, D., Schiffer, J., Ortega, R.: Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids. Int. J. Control 89(5), 909–918 (2016)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid - the new and improved power grid: a survey. Commun. Surv. Tutor. IEEE 14(4), 944–980 (2012)

    CrossRef  Google Scholar 

  14. Farhangi, H.: The path of the smart grid. IEEE Power Energy Mag. 8(1), 18–28 (2010)

    MathSciNet  CrossRef  Google Scholar 

  15. Franci, A., Chaillet, A., Panteley, E., Lamnabhi-Lagarrigue, F.: Desynchronization and inhibition of Kuramoto oscillators by scalar mean-field feedback. Math. Control. Signals Syst. 24(1–2), 169–217 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Fridman, E.: Tutorial on Lyapunov-based methods for time-delay systems. Eur. J. Control. 20, 271–283 (2014)

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Green, T., Prodanovic, M.: Control of inverter-based micro-grids. Electr. Power Syst. Res. 77(9), 1204–1213 (2007). July

    CrossRef  Google Scholar 

  18. Guckenheimer, J., Holmes, P.: Structurally stable heteroclinic cycles. Math. Proc. Camb. Phil. Soc. 103, 189–192 (1988)

    MathSciNet  MATH  CrossRef  Google Scholar 

  19. Guerrero, J., Loh, P., Chandorkar, M., Lee, T.: Advanced control architectures for intelligent microgrids - part I: decentralized and hierarchical control. IEEE Trans. Ind. Electron. 60(4), 1254–1262 (2013)

    CrossRef  Google Scholar 

  20. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C.: Microgrids. IEEE Power Energy Mag. 5(4), 78–94 (2007)

    CrossRef  Google Scholar 

  21. C.M. Kellett, F.R. Wirth, P.M. Dower, Input-to-state stability, integral input-to-state stability, and unbounded level sets. In: Proceedings of 9th IFAC Symposium on Nonlinear Control Systems, pp. 38–43, Toulouse (2013)

    Google Scholar 

  22. Kukrer, O.: Discrete-time current control of voltage-fed three-phase PWM inverters. IEEE Trans. Power Electron. 11(2), 260–269 (1996)

    CrossRef  Google Scholar 

  23. R. Lasseter. Microgrids. In IEEE Power Engineering Society Winter Meeting, 2002, volume 1, pages 305 – 308 vol.1, 2002

    Google Scholar 

  24. Lopes, J., Moreira, C., Madureira, A.: Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006). May

    CrossRef  Google Scholar 

  25. Maksimovic, D., Zane, R.: Small-signal discrete-time modeling of digitally controlled PWM converters. IEEE Trans. Power Electron. 22(6), 2552–2556 (2007)

    CrossRef  Google Scholar 

  26. P. Monzón, R. Potrie, Local and global aspects of almost global stability. In: Proceedings of 45th IEEE Conference on Decision and Control, pp. 5120–5125, San Diego, USA (2006)

    Google Scholar 

  27. Münz, U., Romeres, D.: Region of attraction of power systems. Estim. Control. Netw. Syst. 4, 49–54 (2013)

    Google Scholar 

  28. Nitecki, Z., Shub, M.: Filtrations, decompositions, and explosions. Am. J. Math. 97(4), 1029–1047 (1975)

    MathSciNet  MATH  CrossRef  Google Scholar 

  29. Nussbaumer, T., Heldwein, M.L., Gong, G., Round, S.D., Kolar, J.W.: Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM rectifier system. IEEE Trans. Ind. Electron. 55(2), 791–799 (2008)

    CrossRef  Google Scholar 

  30. Pepe, P., Karafyllis, I., Jiang, Z.-P.: On the Liapunov-Krasovskii methodology for the ISS of systems described by coupled delay differential and difference equations. Automatica 44(9), 2266–2273 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  31. R. Rajaram, U. Vaidya, M. Fardad, Connection between almost everywhere stability of an ODE and advection PDE. In: Proceedings of the 46th IEEE Conference Decision and Control, pp. 5880–5885, New Orleans (2007)

    Google Scholar 

  32. Rantzer, A.: A dual to Lyapunov’s stability theorem. Syst. Control Lett. 42, 161–168 (2001)

    MathSciNet  MATH  CrossRef  Google Scholar 

  33. Rocabert, J., Luna, A., Blaabjerg, F., Rodriguez, P.: Control of power converters in AC microgrids. IEEE Trans. Power Electron. 27(11), 4734–4749 (2012). Nov

    CrossRef  Google Scholar 

  34. Rumyantsev, V., Oziraner, A.: Stability and stabilization of motion with respect to part of variables. Nauka, Moscow (1987). [in Russian]

    MATH  Google Scholar 

  35. J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, T. Sezi, Conditions for stability of droop-controlled inverter-based microgrids. Automatica (2014). Accepted

    Google Scholar 

  36. J. Schiffer, R. Ortega, C.A. Hans, J. Raisch, Droop-controlled inverter-based microgrids are robust to clock drifts. In: American Control Conference (ACC), pp. 2341–2346. IEEE (2015)

    Google Scholar 

  37. Simpson-Porco, J.W., Dörfler, F., Bullo, F.: Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica 49(9), 2603–2611 (2013)

    MathSciNet  MATH  CrossRef  Google Scholar 

  38. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    MathSciNet  MATH  CrossRef  Google Scholar 

  39. Sontag, E.: On the input-to-state stability property. Eur. J. Control 1, 24–36 (1995)

    MATH  CrossRef  Google Scholar 

  40. Sontag, E., Wang, Y.: New characterizations of input-to-state stability. IEEE Trans. Autom. Control 41(9), 1283–1294 (1996)

    MathSciNet  MATH  CrossRef  Google Scholar 

  41. Sontag, E.D., Wang, Y.: On characterizations of input-to-state stability with respect to compact sets. In: Proceedings of IFAC Non-Linear Control Systems Design Symposium. NOLCOS ’95, pp. 226–231. Tahoe City, CA (1995)

    Google Scholar 

  42. Stan, G.-B., Sepulchre, R.: Analysis of interconnected oscillators by dissipativity theory. IEEE Trans. Autom. Control 52, 256–270 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  43. Teel, A.R.: Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans. Automat. Control 43(7), 960–964 (1998)

    MathSciNet  MATH  CrossRef  Google Scholar 

  44. van Handel, R.: Almost global stochastic stability. SIAM J. Control Optim. 45(4), 1297–1313 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  45. Varaiya, P.P., Wu, F.F., Bialek, J.W.: Smart operation of smart grid: risk-limiting dispatch. Proc. IEEE 99(1), 40–57 (2011)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Government of Russian Federation (Grant 08-08) and the Ministry of Education and Science of Russian Federation (Project 14.Z50.31.0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Efimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Efimov, D., Schiffer, J., Ortega, R. (2019). Robustness of Delayed Multistable Systems. In: Valmorbida, G., Seuret, A., Boussaada, I., Sipahi, R. (eds) Delays and Interconnections: Methodology, Algorithms and Applications. Advances in Delays and Dynamics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-11554-8_6

Download citation