Skip to main content

Stability of Interconnected Uncertain Delay Systems: A Converse Lyapunov Approach

Part of the Advances in Delays and Dynamics book series (ADVSDD,volume 10)

Abstract

In this chapter we first recall a collection of converse Lyapunov–Krasovskii theorems for uncertain linear retarded systems. The originality of these theorems resides in the weakly-degenerate conditions required on the Lyapunov–Krasovskii functionals. Thanks to these theorems, sufficient conditions for the stability of interconnected uncertain linear retarded systems are given.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-11554-8_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-11554-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)

References

  1. Bao, L., Fei, S., Yu, L.: Exponential stability of linear distributed parameter switched systems with time-delay. J. Syst. Sci. Complex. 27(2), 263–275 (2014)

    MathSciNet  CrossRef  Google Scholar 

  2. Curtain, R., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory, vol. 21. Springer, Berlin (1995)

    Google Scholar 

  3. Fridman, E.: Stability of systems with uncertain delays: a new “complete” Lyapunov-Krasovskii functional. IEEE Trans. Autom. Control 51(5), 885–890 (2006)

    MathSciNet  CrossRef  Google Scholar 

  4. Fridman, E., Niculescu, S.I.: On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. Int. J. Robust Nonlinear Control 18(3), 364–374 (2008)

    MathSciNet  CrossRef  Google Scholar 

  5. Haidar, I., Mason, P., Sigalotti, M.: Converse Lyapunov-Krasovskii theorems for uncertain retarded differential equations. Automatica 62, 263–273 (2015)

    MathSciNet  CrossRef  Google Scholar 

  6. Hale, J., Lunel, S.V.: Introduction to Functional Differential Equations, vol. 99. Springer, Berlin (1993)

    Google Scholar 

  7. Hante, F., Sigalotti, M.: Converse Lyapunov theorems for switched systems in Banach and Hilbert spaces. SIAM J. Control Optim. 49(2), 752–770 (2011)

    MathSciNet  CrossRef  Google Scholar 

  8. Hetel, L., Daafouz, J., Iung, C.: Equivalence between the Lyapunov-Krasovskii functional approach for discrete delay systems and the stability conditions for switched systems. Nonlinear Anal. Hybrid Syst. 2(3), 697–705 (2008)

    MathSciNet  CrossRef  Google Scholar 

  9. Ito, H., Pepe, P., Jiang, Z.-P.: A small-gain condition for iISS of interconnected retarded systems based on Lyapunov-Krasovskii functionals. Automatica 46(10), 1646–1656 (2010)

    MathSciNet  CrossRef  Google Scholar 

  10. Karafyllis, I.: Lyapunov theorems for systems described by retarded functional differential equations. Nonlinear Anal. Theory Methods Appl. 64, 590–617 (2006)

    Google Scholar 

  11. Karafyllis, I., Pepe, P., Jiang, Z.-P.: Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations. Eur. J. Control 14(6), 516–536 (2008)

    MathSciNet  CrossRef  Google Scholar 

  12. Kharitonov, V.: Time-Delay Systems: Lyapunov Functionals and Matrices. Control Engineering, Birkhäuser Boston (2012)

    Google Scholar 

  13. Lillo, J.C.: Oscillatory solutions of the equation \(y^{\prime }(x)=m(x)y(x-n(x))\). J. Differ. Equ. 6, 1–35 (1969)

    Google Scholar 

  14. Mazenc, F., Niculescu, S.I., Krstic, M.: Lyapunov-Krasovskii functionals and application to input delay compensation for linear time-invariant systems. Autom. J. IFAC 48(7), 1317–1323 (2012)

    MathSciNet  CrossRef  Google Scholar 

  15. Myshkis, A.D.: On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument. Mat. Sb. (N.S.) 28(70)(3), 641–658 (1951) (in Russian)

    Google Scholar 

  16. Niculescu, S.I.: Delay Effects on Stability: A Robust Control Approach, vol. 269. Springer, Berlin (2001)

    MATH  Google Scholar 

  17. Pepe, P., Karafyllis, I.: Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale’s form. Int. J. Control 86(2), 232–243 (2013)

    MathSciNet  CrossRef  Google Scholar 

  18. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39, 1667–1694 (2003)

    MathSciNet  CrossRef  Google Scholar 

  19. Sasane, A.: Stability of switching infinite-dimensional systems. Autom. J. IFAC 41(1), 75–78 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Haidar, I., Mason, P., Sigalotti, M. (2019). Stability of Interconnected Uncertain Delay Systems: A Converse Lyapunov Approach. In: Valmorbida, G., Seuret, A., Boussaada, I., Sipahi, R. (eds) Delays and Interconnections: Methodology, Algorithms and Applications. Advances in Delays and Dynamics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-11554-8_4

Download citation