Anna, F., Quadrat, A.: Applications of the quillen-suslin theorem to multidimensional systems theory. In: Park, H., Regensburger, G. (eds.) Gröbner Bases in Control Theory and Signal Processing, Radon Series on Computation and Applied Mathematics, pp. 23–106. de Gruyter publisher (2007)
Google Scholar
Brethé, D., Loiseau, J.: A result that could bear fruit for the control of delay differential systems. In: Proceedings of the 4th IEEE Mediterranean Symposium on Control and Automation, pp. 168–172. Chania, Greece (1996)
Google Scholar
Chandra, S., Gayme, D., Chakrabortty, A.: Coordinating wind farms and battery management systems for inter-area oscillation damping: a frequency-domain approach. IEEE Trans. Power Syst. 29, 1454–1462 (2014)
CrossRef
Google Scholar
Fliess, M.: Some basic structural properties of generalized linear systems. Syst. Control Lett. 15, 391–396 (1990)
MathSciNet
MATH
CrossRef
Google Scholar
Fliess, M., Mounier, H.: Controllability and observability of linear delay systems : an algebraic approach. ESAIM Control Optim. Calc. Var. 3, 301–314 (1998)
MathSciNet
MATH
CrossRef
Google Scholar
Fliess, M., Mounier, H.: An Algebraic Framework for Infinite Dimensional Linear Systems. e-STA (Sciences et Technologies de l’Automatique) (2004)
Google Scholar
Fliess, M., Mounier, H., Rouchon, P., Rudolph, J.: Controllability and motion planning for linear delay systems with an application to a flexible rod. In: Proceedings of the 34th Conference on Decision and Control, pp. 2046–2051. New Orleans, USA (1995)
Google Scholar
Gayme, D.F., Chakrabortty, A.: A spatio-temporal framework for spectral analysis and control of interarea oscillations in wind-integrated power systems. IEEE Trans. Control Syst. Technol. 22, 1658–1665 (2014)
CrossRef
Google Scholar
Glüsing-Lüerßen, H.: A behavioral approach to delay-differential systems. SIAM J. Control Optim., 480–499 (1997)
MathSciNet
MATH
CrossRef
Google Scholar
Magar, K., Balas, M., Gayme, D.: Adaptive suppression of inter-area oscillation using multiple wind power systems in a distributed parameter control methodology. In: Proceedings of the 19th IFAC World Congress, Cape Town, South Africa (2014)
Google Scholar
Mounier, H., Greco, L.: Modelling and structural properties of distributed parameter wind power systems (i). In Proceedings of the MTNS: Minneapolis, p. 2016. MN, USA (2016)
Google Scholar
Mounier, H., Rudolph, J., Woittennek, F.: Boundary value problems and convolutional systems over rings of ultradistributions. In: Advances in the Theory of Control, Signals and Systems with Physical Modeling. Lecture Notes in Control and Information Science, vol. 407, pp. 179–188. Springer, Berlin (2010)
MATH
CrossRef
Google Scholar
Parashar, M., Thorp, J.S.: Continuum modeling of electromechanical dynamics in large-scale power systems. IEEE Trans. Circuits Syst. 51, 1848–1858 (2004)
CrossRef
Google Scholar
Rotman, J.J.: An introduction to Homological Algebra. Springer, New York (1979)
Google Scholar
Rudolph, J., Woittennek, F.: Motion planning and open loop control design for linear distributed parameter systems with lumped controls. Int. J. Control 81, 457–474 (2008)
MathSciNet
MATH
CrossRef
Google Scholar
Thorp, J.S., Seyler, C.E., Phadke, A.G.: Electromechanical wave propagation in large electric power systems. IEEE Trans. Circuit Syst. I 45 (1998)
CrossRef
Google Scholar
Woittennek, F., Mounier, H.: Controllability of networks of spatially one-dimensional second order pde - an algebraic approach. SIAM J. Control Optim. 48, 3882–3902 (2010)
MathSciNet
MATH
CrossRef
Google Scholar
Xu, Y., Wen, F., Ledwich, G., Xue, Y.: Electromechanical wave in power systems: theory and applications. J. Mod. Power Syst. Clean Energy 2, 163–172 (2014)
CrossRef
Google Scholar