Skip to main content

Wave Equation Modelling and Freeness Properties for Wind Power Systems

  • 383 Accesses

Part of the Advances in Delays and Dynamics book series (ADVSDD,volume 10)

Abstract

We examine two wave equation models for strings of generators connected to a wind farm. The first one, with point source boundary condition leads to a purely discrete system, i.e. a delay system without (continuous) dynamics; the second one, with power flow boundary condition is equivalent to a neutral delay system. We then investigate the differential flatness of the systems.

Keywords

  • Infinite dimensional systems
  • rings
  • modules
  • controllability
  • differential flatness
  • wave equation
  • wind power systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-11554-8_13
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-11554-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)

References

  1. Anna, F., Quadrat, A.: Applications of the quillen-suslin theorem to multidimensional systems theory. In: Park, H., Regensburger, G. (eds.) Gröbner Bases in Control Theory and Signal Processing, Radon Series on Computation and Applied Mathematics, pp. 23–106. de Gruyter publisher (2007)

    Google Scholar 

  2. Brethé, D., Loiseau, J.: A result that could bear fruit for the control of delay differential systems. In: Proceedings of the 4th IEEE Mediterranean Symposium on Control and Automation, pp. 168–172. Chania, Greece (1996)

    Google Scholar 

  3. Chandra, S., Gayme, D., Chakrabortty, A.: Coordinating wind farms and battery management systems for inter-area oscillation damping: a frequency-domain approach. IEEE Trans. Power Syst. 29, 1454–1462 (2014)

    CrossRef  Google Scholar 

  4. Fliess, M.: Some basic structural properties of generalized linear systems. Syst. Control Lett. 15, 391–396 (1990)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Fliess, M., Mounier, H.: Controllability and observability of linear delay systems : an algebraic approach. ESAIM Control Optim. Calc. Var. 3, 301–314 (1998)

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Fliess, M., Mounier, H.: An Algebraic Framework for Infinite Dimensional Linear Systems. e-STA (Sciences et Technologies de l’Automatique) (2004)

    Google Scholar 

  7. Fliess, M., Mounier, H., Rouchon, P., Rudolph, J.: Controllability and motion planning for linear delay systems with an application to a flexible rod. In: Proceedings of the 34th Conference on Decision and Control, pp. 2046–2051. New Orleans, USA (1995)

    Google Scholar 

  8. Gayme, D.F., Chakrabortty, A.: A spatio-temporal framework for spectral analysis and control of interarea oscillations in wind-integrated power systems. IEEE Trans. Control Syst. Technol. 22, 1658–1665 (2014)

    CrossRef  Google Scholar 

  9. Glüsing-Lüerßen, H.: A behavioral approach to delay-differential systems. SIAM J. Control Optim., 480–499 (1997)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Magar, K., Balas, M., Gayme, D.: Adaptive suppression of inter-area oscillation using multiple wind power systems in a distributed parameter control methodology. In: Proceedings of the 19th IFAC World Congress, Cape Town, South Africa (2014)

    Google Scholar 

  11. Mounier, H., Greco, L.: Modelling and structural properties of distributed parameter wind power systems (i). In Proceedings of the MTNS: Minneapolis, p. 2016. MN, USA (2016)

    Google Scholar 

  12. Mounier, H., Rudolph, J., Woittennek, F.: Boundary value problems and convolutional systems over rings of ultradistributions. In: Advances in the Theory of Control, Signals and Systems with Physical Modeling. Lecture Notes in Control and Information Science, vol. 407, pp. 179–188. Springer, Berlin (2010)

    MATH  CrossRef  Google Scholar 

  13. Parashar, M., Thorp, J.S.: Continuum modeling of electromechanical dynamics in large-scale power systems. IEEE Trans. Circuits Syst. 51, 1848–1858 (2004)

    CrossRef  Google Scholar 

  14. Rotman, J.J.: An introduction to Homological Algebra. Springer, New York (1979)

    Google Scholar 

  15. Rudolph, J., Woittennek, F.: Motion planning and open loop control design for linear distributed parameter systems with lumped controls. Int. J. Control 81, 457–474 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Thorp, J.S., Seyler, C.E., Phadke, A.G.: Electromechanical wave propagation in large electric power systems. IEEE Trans. Circuit Syst. I 45 (1998)

    CrossRef  Google Scholar 

  17. Woittennek, F., Mounier, H.: Controllability of networks of spatially one-dimensional second order pde - an algebraic approach. SIAM J. Control Optim. 48, 3882–3902 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Xu, Y., Wen, F., Ledwich, G., Xue, Y.: Electromechanical wave in power systems: theory and applications. J. Mod. Power Syst. Clean Energy 2, 163–172 (2014)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Mounier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mounier, H., Greco, L. (2019). Wave Equation Modelling and Freeness Properties for Wind Power Systems. In: Valmorbida, G., Seuret, A., Boussaada, I., Sipahi, R. (eds) Delays and Interconnections: Methodology, Algorithms and Applications. Advances in Delays and Dynamics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-11554-8_13

Download citation