Introducing NarRob, a Robotic Storyteller

  • Agnese AugelloEmail author
  • Ignazio Infantino
  • Umberto Maniscalco
  • Giovanni Pilato
  • Filippo Vella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11385)


In this work we introduce NarRob, a robot able to engage in conversations and tell stories, by accompanying the speech with proper gestures. We discuss about the main components of the robot’s architecture, and some possible education experiments that we are planning to carry out in real scholastic contexts.


Storytelling Social robots Chatbots Social practices 


  1. 1.
    Pandey, A.K., Gelin, R.: Humanoid robots in education: a short review. In: Goswami, A., Vadakkepat, P. (eds.) Humanoid Robotics: A Reference, pp. 1–16. Springer, Dordrecht (2016). Scholar
  2. 2.
    Eades, J.: Classroom Tales: Using Storytelling to Build Emotional, Social and Academic Skills Across the Primary Curriculum. Jessica Kingsley Publishers, London (2005)Google Scholar
  3. 3.
    Smeda, N., Dakich, E., Sharda, N.: The effectiveness of digital storytelling in the classrooms: a comprehensive study. Smart Learn. Environ. 1, 6 (2014)CrossRefGoogle Scholar
  4. 4.
    Jenkins, M., Lonsdale, J.: Evaluating the effectiveness of digital storytelling for student reflection. In: ICT: Providing Choices for Learners and Learning. Proceedings ASCILITE Singapore (2007)Google Scholar
  5. 5.
    Mutlu, B., Forlizzi, J., Hodgins, J.: A storytelling robot: modeling and evaluation of human-like gaze behavior. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 518–523, December 2006Google Scholar
  6. 6.
    Kory, J., Breazeal, C.: Storytelling with robots: learning companions for preschool children’s language development. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 643–648, August 2014Google Scholar
  7. 7.
    Leite, I., et al.: Narratives with robots: the impact of interaction context and individual differences on story recall and emotional understanding. Front. Robot. AI 4, 29 (2017)CrossRefGoogle Scholar
  8. 8.
    Striepe, H., Lugrin, B.: There once was a robot storyteller: measuring the effects of emotion and non-verbal behaviour. In: Kheddar, A., et al. (eds.) ICSR 2017. LNCS, vol. 10652, pp. 126–136. Springer, Cham (2017). Scholar
  9. 9.
    Xu, J., Broekens, J., Hindriks, K., Neerincx, M.A.: Effects of a robotic storyteller’s moody gestures on storytelling perception. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 449–455. IEEE (2015)Google Scholar
  10. 10.
    Rodriguez, I., Manfré, A., Vella, F., Infantino, I., Lazkano, E.: Talking with sentiment: adaptive expression generation behavior for social robots. In: The 19th International Workshop of Physical Agents (WAF) (2018)Google Scholar
  11. 11.
    Augello, A., Gentile, M., Dignum, F.: Social agents for learning in virtual environments. In: Bottino, R., Jeuring, J., Veltkamp, R.C. (eds.) GALA 2016. LNCS, vol. 10056, pp. 133–143. Springer, Cham (2016). Scholar
  12. 12.
    McNeill, D.: Hand and Mind: What Gestures Reveal About Thought. University of Chicago Press, Chicago (1992)Google Scholar
  13. 13.
    Lingling, M., Runqing, H., Junzhong, G.: A review of semantic similarity measures in wordnet. Int. J. Hybrid Inf. Technol. 6(1), 1–12 (2013)Google Scholar
  14. 14.
    Pilato, G., DAvanzo, E.: Data-driven social mood analysis through the conceptualization of emotional fingerprints. Proc. Comput. Sci. 123, 360–365 (2018). 8th Annual International Conference on Biologically Inspired Cognitive Architectures, BICA 2017 (Eighth Annual Meeting of the BICA Society), held August 1–6, 2017 in Moscow, RussiaCrossRefGoogle Scholar
  15. 15.
    Feldmaier, J., Marmat, T., Kuhn, J., Diepold, K.: Evaluation of a RGB-LED-based emotion display for affective agents, arXiv preprint arXiv:1612.07303 (2016)
  16. 16.
    Johnson, D.O., Cuijpers, R.H., van der Pol, D.: Imitating human emotions with artificial facial expressions. Int. J. Soc. Robot. 5(4), 503–513 (2013)CrossRefGoogle Scholar
  17. 17.
    Bänziger, T., Scherer, K.R.: The role of intonation in emotional expressions. Speech Commun. 46(3), 252–267 (2005)CrossRefGoogle Scholar
  18. 18.
    Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC 2008, pp. 1556–1560. ACM, New York (2008)Google Scholar
  19. 19.
    Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25(2–3), 259–284 (1998)CrossRefGoogle Scholar
  20. 20.
    Holzapfel, H., Nickel, K., Stiefelhagen, R.: Implementation and evaluation of a constraint-based multimodal fusion system for speech and 3D pointing gestures, January 2004Google Scholar
  21. 21.
    Gray, C.: The New Social Story Book. Future Horizons, Arlington (2000)Google Scholar
  22. 22.
    Ollendick, T.H., Hart, K.J., Francis, G.: Social validation of the revised behavioral assertiveness test for children (BAT-CR). Child Fam. Behav. Ther. 7(1), 17–34 (1985)CrossRefGoogle Scholar
  23. 23.
    Ayala, A.: The animated stories for autism. Ph.D. thesis, Division TEACCH University of North CarolinaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Agnese Augello
    • 1
    Email author
  • Ignazio Infantino
    • 1
  • Umberto Maniscalco
    • 1
  • Giovanni Pilato
    • 1
  • Filippo Vella
    • 1
  1. 1.ICAR-CNRPalermoItaly

Personalised recommendations