Skip to main content

Relativistic Burgers Models on Curved Background Geometries

  • 964 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11386)

Abstract

Relativistic Burgers model and its generalization to various spacetime geometries are recently studied both theoretically and numerically. The numeric implementation is based on finite volume and finite difference approximation techniques designed for the corresponding model on the related geometry. In this work, we provide a summary of several versions of these models on the Schwarzschild, de Sitter, Schwarzschild-de Sitter, FLRW and Reissner-Nordström spacetime geometries with their particular properties.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-11539-5_42
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-11539-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

References

  1. Amorim, P., LeFloch, P.G., Okutmustur, B.: Finite volume schemes on Lorentzian manifolds. Commun. Math. Sci. 6(4), 1059–1086 (2008)

    MathSciNet  CrossRef  Google Scholar 

  2. Ceylan, T., Okutmustur, B.: Finite volume approximation of the relativistic Burgers equation on a Schwarzschild-(anti-)de Sitter spacetime. Turk. J. Math. 41, 1027–1041 (2017)

    MathSciNet  CrossRef  Google Scholar 

  3. Ceylan, T., Okutmustur, B.: Finite volume method for the relativistic Burgers model on a (1+1)-dimensional de Sitter spacetime. Math. Comput. Appl. 21(2), 16 (2016)

    MathSciNet  Google Scholar 

  4. Ceylan, T., LeFloch, P.G., Okutmustur, B.: A finite volume method for the relativistic Burgers equation on a FLRW background spacetime. Commun. Comput. Phys. 23, 500–519 (2018)

    MathSciNet  CrossRef  Google Scholar 

  5. LeFloch, P.G., Makhlof, H., Okutmustur, B.: Relativistic Burgers equations on a curved spacetime. Derivation and finite volume approximation. SIAM J. Numer. Anal. 50(4), 2136–2158 (2012)

    MathSciNet  CrossRef  Google Scholar 

  6. LeFloch, P.G., Okutmustur, B.: Hyperbolic conservation laws on spacetimes. A finite volume scheme based on differential forms. Far East J. Math. Sci. 31, 49–83 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Nordebo, J.: The Reissner-Nordström metric. M.S. Dissertion, Department of Physics, Umea University, Switzerland (2016)

    Google Scholar 

  8. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, 1st edn. Cambridge University Press, Cambridge (2002)

    CrossRef  Google Scholar 

  9. Nashed, G.G.L.: Stability of Reissner-Nordström black hole. Acta Phys. Pol. 112, 13–19 (2007)

    CrossRef  Google Scholar 

  10. Okutmustur, B.: Propagations of shock and rarefaction waves on the Reissner-Nordström spacetimes for Burgers models. SDU J. Nat. Appl. Sci. 22(Spec. Issue), 448–459 (2018)

    Google Scholar 

  11. Wald, R.M.: General Relativity, 1st edn. The University of Chicago Press, Chicago (1984)

    CrossRef  Google Scholar 

Download references

Acknowledgments

Supported by METU-GAP Project, Project no: GAP-101-2018-2767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baver Okutmustur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Okutmustur, B. (2019). Relativistic Burgers Models on Curved Background Geometries. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)