Skip to main content

The EnMAP Mission Planning System

  • Chapter
  • First Online:
Book cover Space Operations: Inspiring Humankind's Future

Abstract

The Environmental Monitoring and Analysis Program mission (EnMAP) is a German hyperspectral Earth observation mission, currently scheduled for launch in 2020. The EnMAP Mission Planning System (MPS), developed and operated by the German Space Operations Center (GSOC), is one of the 15 subsystems constituting the EnMAP ground segment. Its main task is to compile and maintain a conflict-free timeline for routine operations that does not violate any constraints of the spacecraft (e.g. regarding power or onboard memory); this timeline will regularly be commanded to the spacecraft. This paper gives an overview of the current EnMAP MPS design, including the special requirements of the EnMAP mission, the components of the MPS and its most important external interfaces. The design of the EnMAP MPS largely builds on our experience gathered during the TerraSAR-X/TanDEM-X mission and has been developed further. Novel technologies include the Reactive Planning Framework, which particularly stands out due to its high responsiveness to user input. Particular attention is furthermore paid to the inclusion of cloud coverage and sunglint information into the planning process—two challenges which are specific to EnMAP observing in the optical and near-infrared part of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The limited onboard buffer of 120 time-tagged commands is a rather unusual characteristic of the EnMAP mission; for a more detailed discussion in the context of the EnMAP MPS, see [17].

  2. 2.

    http://activemq.apache.org/.

  3. 3.

    http://cassandra.apache.org/.

  4. 4.

    https://logback.qos.ch/.

  5. 5.

    https://www.docker.com/.

  6. 6.

    https://docs.mesosphere.com/.

  7. 7.

    https://www.eomap.com.

References

  1. Knipling, E. B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1(3), 155–159. https://doi.org/10.1016/s0034-4257(70)80021-9.

    Article  Google Scholar 

  2. Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1999). Hyperspectral remote sensing for shallow waters: Deriving bottom depths and water properties by optimization. Applied Optics, 38(18), 3831–3843. https://doi.org/10.1364/ao.38.003831, http://ao.osa.org/abstract.cfm?URI=ao-38-18-3831.

    Article  Google Scholar 

  3. Ben-Dor, E., Chabrillat, S., Demattê, J. A., Taylor, G., Hill, J., Whiting, M., & Sommer, S. (2009). Using Imaging Spectroscopy to study soil properties. Remote Sensing of Environment, 113, S38–S55. https://www.researchgate.net/publication/223042783_Using_Imaging_Spectroscopy_to_study_soil_properties.

  4. Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501–513. https://doi.org/10.1190/1.1440721, http://dx.doi.org/10.1190/1.1440721.

    Article  Google Scholar 

  5. Dozier, J., Green, R. O., Nolin, A. W., & Painter, T. H. (2009). Interpretation of snow properties from imaging spectrometry. Remote Sensing of Environment, 113, S25–S37. https://doi.org/10.1016/j.rse.2007.07.029, https://doi.org/10.1016/j.rse.2007.07.029.

  6. Heldens, W., Heiden, U., Esch, T., Stein, E., & Müller, A. (2011). Can the future EnMAP mission contribute to urban applications? A literature survey. Remote Sensing, 3(9), 1817–1846. http://elib.dlr.de/70793/.

  7. Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., et al. (2015). The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sensing, 7(7), 8830–8857. https://doi.org/10.3390/rs70708830, http://www.mdpi.com/2072-4292/7/7/8830.

    Article  Google Scholar 

  8. Sang, B., Schubert, J., Kaiser, S., Mogulsky, V., Neumann, C., Förster, K.-P., et al. (2008). The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies. Proc SPIE, 7086, 1–15. https://doi.org/10.1117/12.794870, http://dx.doi.org/10.1117/12.794870.

  9. Guanter, L., Kaufmann, H., Foerster, S., Brosinsky, A., Wulf, H., Bochow, M., et al. (2016). EnMAP science plan. Technical Report. GFZ Data Services. https://doi.org/10.2312/enmap.2016.006, http://doi.org/10.2312/enmap.2016.006.

  10. Storch, T., Eberle, S., Makasy, C., Maslin, S., de, A. M., Mißling, K.-D., et al. (2010). On the design of the ground segment for the future hyperspectral satellite mission EnMAP. In 2010 IEEE Aerospace Conference (pp. 1–11). IEEE. http://elib.dlr.de/59778/.

  11. Storch, T., Habermeyer, M., Eberle, S., Mühle, H., & Müller, R. (2013). Towards a critical design of an operational ground segment for an earth observation mission. Journal of Applied Remote Sensing, 7(1), 1–12. http://elib.dlr.de/81601/.

  12. Habermeyer, M., Storch, T., Eberle, S., Makasy, C., Maslin, S., de Miguel, A., et al. (2010). Ground segment design of the EnMAP hyperspectral satellite mission. In H. Lacoste-Francis (Ed.), Hyperspectral Workshop 2010 (Vol. SP-683). ESA Communications. https://doi.org/10.2514/6.2016-2568, http://elib.dlr.de/66561/.

  13. Müller, R., Bachmann, M., Miguel, A., Müller, A., Neumann, A., Palubinskas, G., et al. (2010). The processing chain and Cal/Val operations of the future hyperspectral satellite mission EnMAP. In 2010 IEEE Aerospace Conference (pp. 1–9). http://elib.dlr.de/63948/.

  14. Missling, K.-D., Damerow, H., Habermeyer, M., Kaufmann, H., Maass, H., Mühle, H., et al. (2011). Payload ground segment of the EnMAP mission. In M. Marov (Ed.), Proceedings of the 45th Ziolkovski Conference (pp. 23–29). Kaluga, Russia: Russian Academy of Sciences. http://elib.dlr.de/71229/.

  15. Habermeyer, M., Storch, T., Eberle, S., Makasy, C., de Miguel, A., Missling, K.-D., et al. (2011). Design of the integration and technical verification and validation phase of the ground segment of the hyperspectral satellite mission EnMAP. In EARSeL SIG-IS Workshop 2011. http://elib.dlr.de/72108/.

  16. Maurer, E., Mrowka, F., Braun, A., Geyer, M. P., Lenzen, C., Wasser, Y., & Wickler, M., (2010). TerraSAR-X mission planning system: Automated command generation for spacecraft operations. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 642–648. http://elib.dlr.de/63512/.

  17. Axmann, R., & Eberle, S., Mission planning and operational constraints and their resolution for EO missions like EnMAP. In SpaceOps 2010 Conference, American Institute of Aeronautics and Astronautics, Huntsville, Alabama, USA, 2010. https://doi.org/10.2514/6.2010-2218.

  18. Hartung, J., Nibler, R., Spörl, A., Lenzen, C., Wörle, M. T., & Peat, C. (2016). GSOC SoE-Editor 2.0—a generic sequence of events tool. In 14th International Conference on Space Operations, Daejeon, Republic of Korea, 2016. http://elib.dlr.de/105083/.

  19. Wörle, M. T., Lenzen, C., Göttfert, T., Spörl, A., Grishechkin, B., Mrowka, F., & Wickler, M. (2014). The incremental planning system—GSOC’s next generation mission planning framework. In 13th International Conference on Space Operations, Pasadena, California, USA, 2014. http://elib.dlr.de/89586/.

  20. Mrowka, F., Geyer, M. P., Lenzen, C., Spörl, A., Göttfert, T., Maurer, E., et al. (2011).The joint TerraSAR-X/ TanDEM-X mission planning system. In Symposium Proceedings of IGARSS 2011, Vancouver, Canada (pp. 3971–3974). http://elib.dlr.de/74917.

  21. Mrowka, F., Göttfert, T., Wörle, M. T., Schättler, B., & Stathopoulos, F. (2016). The TerraSAR-X/TanDEM-X mission planning system: Realizing new customer visions by applying new upgrade strategies. In: 14th International Conference on Space Operations, Deajeon, Republic of Korea, 2016. http://elib.dlr.de/104596.

  22. Gasch, J. R., & Campana, K. A. (2000). Cloud cover avoidance in space-based remote sensing acquisition. In S. S. Shen & M. R. Descour (Eds.), Algorithms for multispectral, hyperspectral, and ultraspectral imagery VI, Proceedings of SPIE (Vol. 4049, pp. 336–347). https://doi.org/10.1117/12.410357.

  23. Axmann, R. (2010). Interactive acquisition scheduling for low earth orbiting satellites. Dissertation, Technische Universität München. http://mediatum.ub.tum.de/doc/823513.

  24. Fletcher, P. A. (2004). Image acquisition planning for the CHRIS sensor onboard PROBA. In S. S. Shen & P. E. Lewis (Eds.), Imaging spectrometry X (Vol. 5546, pp. 141–148). https://doi.org/10.1117/12.561097.

  25. Grishechkin, B., Braun, A., & Wickler, M., Optimization of positioning of ground stations for space optical missions. In 12th International Conference on Space Operations, Stockholm, Sweden, 2012. http://elib.dlr.de/77055/.

  26. Stengel, M., Stapelberg, S., Sus, O., Schlundt, C., Poulsen, C., Thomas, G., et al. (2017). Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project. Earth System Science Data, 9(2), 881–904. https://doi.org/10.5194/essd-9-881-2017, https://www.earth-syst-sci-data.net/9/881/2017/.

    Article  Google Scholar 

  27. Stengel, M., Sus, O., Stapelberg, S., Schlundt, C., Poulsen, C., & Hollmann, R. (2017). ESA Cloud_cci cloud property datasets retrieved from passive satellite sensors: AVHRR-PM L3C/L3U cloud products—version 2.0. Deutscher Wetterdienst (DWD). https://doi.org/10.5676/dwd/esa_cloud_cci/avhrr-pm/v002, https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002.

  28. Reinert, D., Prill, F., Frank, H., Denhard, M., & Zängl, G. (2018). Database reference manual for ICON and ICON-EPS (version 1.2.2). Deutscher Wetterdienst. https://doi.org/10.5676/dwd_pub/nwv/icon_1.2.2, https://d-nb.info/1081305452/34.

  29. Grishechkin, B., Braun, A., & Wickler, M. (2012). Clouds handling for planning of optical space missions. In 12th International Conference on Space Operations, Stockholm, Sweden, 2012. http://elib.dlr.de/77056/.

  30. Kay, S., Hedley, J. D., & Lavender, S. (2009). Sun Glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths. Remote Sensing, 1(4), 697–730. https://doi.org/10.3390/rs1040697, http://www.mdpi.com/2072-4292/1/4/697.

    Article  Google Scholar 

  31. Cox, C., & Munk, W. (1954). Measurement of the roughness of the sea surface from photographs of the sun’s glitter. The Journal of the Optical Society of America, 44(11), 838–850. https://doi.org/10.1364/josa.44.000838.

    Article  Google Scholar 

  32. Mailhe, L. M., Schiff, C., & Stadler, J. H., Calipso’s mission design: Sun-glint avoidance strategies. Advances in Astronautical Sciences, 119, 195–213. https://ntrs.nasa.gov/search.jsp?R=20040081137.

  33. Ebuchi, N., & Kizu, S. (2002). Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers. Journal of Oceanography, 58(3), 477–486. https://doi.org/10.1023/A:1021213331788, http://dx.doi.org/10.1023/A%3A1021213331788.

    Article  Google Scholar 

  34. Heiden, U., Pinnel, N., Mühle, H., Pengler, I., & Storch, T. (2011). The EnMAP user interface and user request scenarios. In Proceedings of the EARSeL 7th SIG-Imaging Spectroscopy Workshop, Edinburgh, United Kingdom, 2011 (pp. 1–6). http://elib.dlr.de/72267/.

  35. Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., et al. (2016). The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 185, 271–283. https://doi.org/10.1016/j.rse.2015.11.032, http://www.sciencedirect.com/science/article/pii/S0034425715302194.

    Article  Google Scholar 

  36. Göttfert, T., Lenzen, C., Wörle, M. T., Mrowka, F., & Wickler, M. (2014). Robust commanding. In 13th International Conference on Space Operations, Pasadena, California, USA, 2014. http://elib.dlr.de/89617/.

Download references

Acknowledgements

Supported by the DLR Space Administration with funds of the German Federal Ministry of Economic Affairs and Technology on the basis of a decision by the German Bundestag (50 EE 0850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Fruth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fruth, T., Lenzen, C., Gross, E., Mrowka, F. (2019). The EnMAP Mission Planning System. In: Pasquier, H., Cruzen, C., Schmidhuber, M., Lee, Y. (eds) Space Operations: Inspiring Humankind's Future. Springer, Cham. https://doi.org/10.1007/978-3-030-11536-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11536-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11535-7

  • Online ISBN: 978-3-030-11536-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics