Skip to main content

Linear Approximations of Turbulent Moments of Horizontal Velocity and Temperature Fluctuations Within a Forced Convection Sublayer of the Atmospheric Surface Layer

  • Conference paper
  • First Online:
  • 565 Accesses

Abstract

In the convective surface layer a heavy forced convection sublayer is distinguished. The turbulent moments of this sublayer depend mainly on the buoyance flux. It is shown that “linear” approximations are effective for describing turbulent moments of this sublayer. These approximations correspond to truncated Taylor series expansions in a modified height, that include only two terms. The first-order expansion terms do not take into account the wind and represent the free convection limits of the Monin-Obukhov similarity theory. The second-order expansion terms take into account the wind and its effect on the convection. The proposed approximations are compared with the experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Obukhov, A.M.: Turbulence in thermally inhomogeneous atmosphere. Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR. 1, 95–115 (1946)

    Google Scholar 

  2. Monin, A.S., Obukhov, A.M.: The dimensionless characteristics of turbulence in the surface layer of the atmosphere. Dokl. Akad. Nauk SSSR 93, 257–260 (1953)

    Google Scholar 

  3. Monin, A.S., Obukhov, A.M.: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst. Akad. Nauk SSSR. 151, 167–187 (1954)

    Google Scholar 

  4. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. MIT, Cambridge (1975)

    Google Scholar 

  5. Kader, B.A., Yaglom, A.M.: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech. 212, 637–662 (1990)

    Article  Google Scholar 

  6. Priestley, C.H.B.: Turbulent Transfer in the Lower Atmosphere. University of Chicago Press, Chicago (1959)

    Google Scholar 

  7. Wyngaard, J.C., Cote, O.R., Izumi, Y.: Local free convection, similarity and the budgets of shear stress and heat flux. J. Atmos. Sci. 28, 1171–1182 (1971)

    Article  Google Scholar 

  8. Vulfson, A.N.: Equations of deep convection in a dry atmosphere. Izv. Atmos. Ocean. Phys. 17, 646–649 (1981)

    Google Scholar 

  9. Turner, J.S.: Buoyancy Effects in Fluids. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  10. Kaimal, J.C., et al.: Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33, 2152–2169 (1976)

    Article  Google Scholar 

  11. Vulfson, A.N., Borodin, O.O.: An ensemble of dynamically identical thermals and vertical profiles of turbulent moments in the convective surface layer of atmosphere. Russ. Meteorol. Hydrol. 34, 491 (2009)

    Article  Google Scholar 

  12. Vulfson, A., Borodin, O., Nikolaev, P.: Convective jets: volcanic activity and turbulent mixing in the boundary layers of the atmosphere and ocean. In: Karev, V., Klimov, D., Pokazeev, K. (eds.) Physical and Mathematical Modeling of Earth and Environment Processes, PMMEEP 2017, pp. 71–83. Springer, Cham (2017)

    Google Scholar 

  13. Vulfson, A.N., Nikolaev, P.V.: An integral model of a convective jet with a pressure force and forms of vertical fluxes in the atmospheric surface layer. J. Phys: Conf. Ser. 955, 012013 (2018)

    Google Scholar 

  14. Li, D., Katul, G.G., Bou-Zeid, E.: Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer. Phys. Fluids 24, 105105 (2012)

    Article  Google Scholar 

  15. Andreas, E.L., Hill, R.J., Gosz, J.R., Moore, D.I., Otto, W.D., Sarma, A.D.: Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity. Bound.-Layer Meteorol. 86, 379–408 (1998)

    Article  Google Scholar 

  16. Businger, J.A., Wyngaard, J.C., Izumi, Y., Bradley, E.F.: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181–189 (1971)

    Article  Google Scholar 

  17. Huo, Q., Cai, X., Kang, L., Zhang, H., Song, Y.: Effects of surface source/sink distributions on the flux–gradient similarity in the unstable surface layer. Theoret. Appl. Climatol. 119, 313–322 (2015)

    Article  Google Scholar 

  18. Katul, G.G., Hsieh, C.I.: A note on the flux-variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer. Bound.-Layer Meteorol. 90, 327–338 (1999)

    Article  Google Scholar 

  19. Asanuma, J., Brutsaert, W.: Turbulence variance characteristics of temperature and humidity in the unstable atmospheric surface layer above a variable pine forest. Water Resour. Res. 35, 515–521 (1999)

    Article  Google Scholar 

  20. Choi, T., et al.: Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements. J. Geophys. Res. D: Atmos. 109, 1–12 (2004)

    Google Scholar 

  21. Wilson, D.K.: An alternative function for the wind and temperature gradients in unstable surface layers. Bound.-Layer Meteorol. 99, 151–158 (2001)

    Article  Google Scholar 

  22. Liu, X., Tsukamoto, O., Oikawa, T., Ohtaki, E.: A study of correlations of scalar quantities in the atmospheric surface layer. Bound.-Layer Meteorol. 87, 499–508 (1998)

    Article  Google Scholar 

  23. Vulfson, A.N., Nikolaev, P.V: Linear approximations of the second turbulent moments of the atmospheric convective surface layer in a forced-convection sublayer. Izv. Atmos. Ocean. Phys. 54, 472–479 (2018)

    Google Scholar 

  24. Vulfson, A.N., Volodin, I.A., Borodin, O.O.: Local similarity theory and universal profiles of turbulent characteristics in the convective boundary layer. Russ. Meteorol. Hydrol. 10, 1–10 (2004)

    Google Scholar 

  25. Shao, Y., Hacker, J.M.: Local similarity relationships in a horizontally inhomogeneous boundary layer. Bound.-Layer Meteorol. 52, 17–40 (1990)

    Article  Google Scholar 

  26. Wood, C.R., et al.: Turbulent flow at 190 m height above London during 2006–2008: a climatology and the applicability of similarity theory. Bound.-Layer Meteorol. 137, 77–96 (2010)

    Article  Google Scholar 

  27. Nadeau, D.F., Pardyjak, E.R., Higgins, C.W., Parlange, M.B.: Similarity scaling over a steep alpine slope. Bound.-Layer Meteorol. 147, 401–419 (2013)

    Article  Google Scholar 

  28. Liu, Y., et al.: Nondimensional wind and temperature profiles in the atmospheric surface layer over the hinterland of the Taklimakan Desert in China. Adv. Meteorol. 2016, 1–8 (2016)

    Google Scholar 

  29. Kang, D., Wang, Q.: Optimized estimation of surface layer characteristics from profiling measurements. Atmosphere (Basel) 7, 14 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vulfson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vulfson, A., Nikolaev, P. (2019). Linear Approximations of Turbulent Moments of Horizontal Velocity and Temperature Fluctuations Within a Forced Convection Sublayer of the Atmospheric Surface Layer. In: Karev, V., Klimov, D., Pokazeev, K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes (2018). Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-11533-3_35

Download citation

Publish with us

Policies and ethics