Advertisement

Classification of Reductive Monoid Spaces over an Arbitrary Field

  • Mahir Bilen CanEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 277)

Abstract

In this semi-expository paper, we review the notion of a spherical space. In particular, we present some recent results of Wedhorn on the classification of spherical spaces over arbitrary fields. As an application, we introduce and classify reductive monoid spaces over an arbitrary field.

Keywords

Spherical spaces Colored fans Reductive monoid spaces 

Notes

Acknowledgements

I thank the organizers of the 2017 Southern Regional Algebra Conference: Laxmi Chataut, Jörg Feldvoss, Lauren Grimley, Drew Lewis, Andrei Pavelescu, and Cornelius Pillen. I am grateful to Jörg Feldvoss, Lex Renner, Soumya Dipta Banerjee, and to the anonymous referee for their very careful reading of the paper and for their suggestions, which improved the quality of the article. This work was partially supported by a grant from the Louisiana Board of Regents.

References

  1. 1.
    Borel, A.: Linear Algebraic Groups, 2nd edn. Graduate Texts in Mathematics, vol. 126. Springer-Verlag, New York (1991)CrossRefGoogle Scholar
  2. 2.
    Bravi, P., Pezzini, G.: Primitive wonderful varieties. Math. Z. 282(3–4), 1067–1096 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brion, M.: Quelques propriétés des espaces homogènes sphériques. Manuscr. Math. 55(2), 191–198 (1986)CrossRefGoogle Scholar
  4. 4.
    Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58(2), 397–424 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brion, M.: On algebraic semigroups and monoids. In: Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics. Fields Institute Communications, vol. 71, pp. 1–54. Springer, New York (2014)Google Scholar
  6. 6.
    Brion, M.: Some structure theorems for algebraic groups. In: Algebraic Groups: Structure and Actions. Proceedings of Symposia in Pure Mathematics, vol. 94, pp. 53–126. American Mathematical Society, Providence, RI (2017)Google Scholar
  7. 7.
    Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Graduate Texts in Mathematics, vol. 98. Springer-Verlag, New York (1995). Translated from the German manuscript, Corrected reprint of the 1985 translationGoogle Scholar
  8. 8.
    Chevalley, C.: Theory of Lie Groups I. Princeton Mathematical Series, vol. 8. Fifteenth printing, Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ (1999)Google Scholar
  9. 9.
    Conrad, B.: Reductive group schemes. In: Autour des Schémas en Groupes, vol. I. Panor. Synthèses, vol. 42/43, pp. 93–444. Société mathématique de France, Paris (2014)Google Scholar
  10. 10.
    Danilov, V.I.: The geometry of toric varieties. Uspekhi Mat. Nauk 33(2), 85–134, 247 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    De Concini, C.: Normality and non normality of certain semigroups and orbit closures. In: Algebraic Transformation Groups and Algebraic Varieties. Encylopaedia of Mathematical Sciences, vol. 132, pp. 15–35. Springer, Berlin (2004)Google Scholar
  12. 12.
    Demazure, M.: Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. 4(3), 507–588 (1970)CrossRefGoogle Scholar
  13. 13.
    Demazure, M., Gabriel, P.: Introduction to Algebraic Geometry and Algebraic Groups. North-Holland Mathematics Studies, vol. 39. North-Holland Publishing Co., Amsterdam-New York (1980). Translated from the French by J. BellGoogle Scholar
  14. 14.
    Helgason, S.: Groups and Geometric Analysis. Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence, RI (2000). Integral geometry, invariant differential operators, and spherical functions, Corrected reprint of the 1984 originalCrossRefGoogle Scholar
  15. 15.
    Huruguen, M.: Toric varieties and spherical embeddings over an arbitrary field. J. Algebra 342, 212–234 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Knop, F.: The Luna-Vust theory of spherical embeddings. In: Proceedings of the Hyderabad Conference on Algebraic Groups, Hyderabad, pp. 225–249 (1989). Manoj Prakashan, Madras (1991)Google Scholar
  17. 17.
    Knutson, D.: Algebraic Spaces. Lecture Notes in Mathematics, vol. 203. Springer-Verlag, Berlin-New York (1971)CrossRefGoogle Scholar
  18. 18.
    Legendre, A.M.: Recherches sur l’attraction des spheroides homogenes. In: Mémoires de mathématique et de physique : prés. à l’Académie Royale des Sciences, par divers savans, et lûs dans ses assemblées, vol. 1785, pp. 411–434 (2007)Google Scholar
  19. 19.
    Li, Z., Putcha, M.: Types of reductive monoids. J. Algebra 221(1), 102–116 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Luna, D., Vust, T.: Plongements d’espaces homogènes. Comment. Math. Helv. 58(2), 186–245 (1983)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi (2008). With appendices by C.P. Ramanujam and Y. Manin, Corrected reprint of the second edition (1974)Google Scholar
  22. 22.
    Onishchik, A.L., Vinberg, È.B.: Lie Groups and Algebraic Groups. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1990). Translated from the Russian and with a preface by D.A. LeitesCrossRefGoogle Scholar
  23. 23.
    Ono, T.: On the field of definition of Borel subgroups of semi-simple algebraic groups. J. Math. Soc. Jpn. 15, 392–395 (1963)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Popov, V.L.: Contractions of actions of reductive algebraic groups. Mat. Sb. (N.S.) 130(172)(3(7)), 310–334, 431 (1986)Google Scholar
  25. 25.
    Putcha, M.S.: Linear Algebraic Monoids. London Mathematical Society Lecture Note Series, vol. 133. Cambridge University Press, Cambridge (1988)Google Scholar
  26. 26.
    Renner, L.E.: Reductive monoids are von Neumann regular. J. Algebra 93(2), 237–245 (1985)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Renner, L.E.: Classification of semisimple varieties. J. Algebra 122(2), 275–287 (1989)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Renner, L.E.: Linear Algebraic Monoids. Encyclopaedia of Mathematical Sciences, vol. 134. Springer-Verlag, Berlin (2005). Invariant Theory and Algebraic Transformation Groups, VGoogle Scholar
  29. 29.
    Rittatore, A.: Algebraic monoids and group embeddings. Trans. Groups 3(4), 375–396 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    The Stacks Project Authors. Stacks project (2017). http://stacks.math.columbia.edu
  31. 31.
    Timashev, D.A.: Homogeneous Spaces and Equivariant Embeddings. Encyclopaedia of Mathematical Sciences, vol. 138. Springer, Heidelberg (2011). Invariant Theory and Algebraic Transformation Groups, 8CrossRefGoogle Scholar
  32. 32.
    Vinberg, È.B.: Complexity of actions of reductive groups. Funktsional. Anal. i Prilozhen. 20(1), 1–13, 96 (1986)Google Scholar
  33. 33.
    Vinberg, È.B.: On reductive algebraic semigroups. In: Lie Groups and Lie Algebras: E. B. Dynkin’s Seminar. American Mathematical Society Translations: Series 2, vol. 169, pp. 145–182. American Mathematical Society, Providence, RI (1995)Google Scholar
  34. 34.
    Wedhorn, T.: Spherical spaces. Ann. l’Institut Fourier 68(1), 229–256 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematics DepartmentTulane UniversityNew OrleansUSA

Personalised recommendations