Advertisement

The 3-Modular Character Table of the Automorphism Group of the Sporadic Simple O’Nan Group

  • Klaus LuxEmail author
  • Alexander Ryba
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 277)

Abstract

We compute the 3-modular character table of the group \(\mathrm{O'N}.2\). Much of the table is deduced character theoretically from the known 3-modular character table of the sporadic simple O’Nan group \(\text {O}'\text {N}\). We finish the remaining questions module theoretically with an application of condensation.

Keywords

Sporadic simple group Automorphism group Modular character ATLAS project 

Math subject classification

20-04 20C20 20C34 20C40 

References

  1. 1.
    Andrilli, S.F.: On the uniqueness of O’Nan’s sporadic simple group. ProQuest LLC, Ann Arbor, MI (1979). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:8008854. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick
  2. 2.
    Breuer, T.: The GAP Character Table Library, Version 1.2.1 (2012). GAP packageGoogle Scholar
  3. 3.
    Conway, J., Curtis, R., Norton, S., Parker, R., Wilson, R.: Atlas of Finite Groups. Clarendon Press, Oxford, England (1985)Google Scholar
  4. 4.
    Henke, A., Hiss, G., Müller, J.: The \(7\)-modular decomposition matrices of the sporadic O’Nan group. J. London Math. Soc. (2) 60(1), 58–70 (1999).  https://doi.org/10.1112/S0024610799007735MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hiss, G., Lux, K.: Brauer Trees of Sporadic Groups. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1989)Google Scholar
  6. 6.
    James, G.D.: The decomposition of tensors over fields of prime characteristic. Math. Z. 172(2), 161–178 (1980).  https://doi.org/10.1007/BF01182401MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jansen, C., Lux, K., Parker, R., Wilson, R.: An atlas of Brauer characters. London Mathematical Society Monographs. New Series, vol. 11. The Clarendon Press, Oxford University Press, New York. Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications (1995)Google Scholar
  8. 8.
    Jansen, C., Wilson, R.A.: Two new constructions of the O’Nan group. J. London Math. Soc. (2)56(3), 579–583 (1997).  https://doi.org/10.1112/S0024610798005742MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jansen, C., Wilson, R.A.: The \(2\)-modular and \(3\)-modular decomposition numbers for the sporadic simple O’Nan group and its triple cover. J. London Math. Soc. (2) 57(1), 71–90 (1998).  https://doi.org/10.1112/S0024610798005730MathSciNetCrossRefGoogle Scholar
  10. 10.
    Koshitani, S., Kunugi, N., Waki, K.: Broué’s conjecture for non-principal 3-blocks of finite groups. J. Pure Appl. Algebra 173(2), 177–211 (2002).  https://doi.org/10.1016/S0022-4049(01)00170-0MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lux, K., Pahlings, H.: Representations of groups. In: A Computational Approach. Cambridge Studies in Advanced Mathematics, vol. 124. Cambridge University Press, Cambridge (2010).  https://doi.org/10.1017/CBO9780511750915
  12. 12.
    Lux, K., Ryba, A.J.E.: The 13-modular character table of \(2.{\rm Suz}.2\). Comm. Algebra (to appear)Google Scholar
  13. 13.
    Müller, J.: Private communication (2017)Google Scholar
  14. 14.
    O’Nan, M.E.: Some evidence for the existence of a new simple group. Proc. London Math. Soc. (3) 32(3), 421–479 (1976).  https://doi.org/10.1112/plms/s3-32.3.421MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ottensmann, M.: Vervollständigung der Brauerbäume von \( 3.{\rm ON}\) in Charakteristik \(11\), \(19\) und \(31\) mit Methoden der Kondensation. Diploma thesis, RWTH Aachen (2000)Google Scholar
  16. 16.
    Parker, R.A.: The computer calculation of modular characters (the meat-axe). In: Computational Group Theory, pp. 267–274. Durham (1982); Academic Press, London (1984)Google Scholar
  17. 17.
    Ringe, M.: The C–Meataxe. Manual RWTH Aachen (1994)Google Scholar
  18. 18.
    Ryba, A.J.E.: A new construction of the O’Nan simple group. J. Algebra 112(1), 173–197 (1988).  https://doi.org/10.1016/0021-8693(88)90141-XMathSciNetCrossRefGoogle Scholar
  19. 19.
    Ryba, A.J.E.: Computer condensation of modular representations. J. Symbolic Comput. 9(5–6), 591–600 (1990).  https://doi.org/10.1016/S0747-7171(08)80076-4. Computational Group Theory, Part 1MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ryba, A.J.E.: Condensation of symmetrized tensor powers. J. Symbolic Comput. 32(3), 273–289 (2001).  https://doi.org/10.1006/jsco.2001.0459MathSciNetCrossRefGoogle Scholar
  21. 21.
    Soicher, L.H.: A new existence and uniqueness proof for the O’Nan group. Bull. London Math. Soc. 22(2), 148–152 (1990).  https://doi.org/10.1112/blms/22.2.148MathSciNetCrossRefGoogle Scholar
  22. 22.
    The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.7.5 (2014). http://www.gap-system.org
  23. 23.
    The Modular Atlas homepage. http://www.math.rwth-aachen.de/~MOC/
  24. 24.
    Wilson, R., Parker, R., Nickerson, S., Bray, J., Breuer, T.: AtlasRep, a GAP interface to the atlas of group representations, Version 1.5 (2011). Refereed GAP packageGoogle Scholar
  25. 25.
    Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J., Abbott, R.: ATLAS of Finite Group Representations. http://brauer.maths.qmul.ac.uk/Atlas/
  26. 26.
    Wilson, R.A.: Standard generators for sporadic simple groups. J. Algebra 184(2), 505–515 (1996).  https://doi.org/10.1006/jabr.1996.0271MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA
  2. 2.Department of Computer ScienceQueens College/CUNYQueensUSA

Personalised recommendations