Skip to main content

Abstract

The increasing traffic intensity and the emerging disproportions in the development of individual modes of transport cause that the European transport system becomes overloaded. Therefore, an important premise for the development of transport are the requirements of environmental protection, which affect the preference of environmentally friendly branches and transport technologies like multimodal or intermodal transport systems. The main objective of this chapter is to provide example of the terminals network modelling as well as the transport network using the graph method. A Polish logistic service provider PCC Intermodal was selected as an example of the logistic infrastructure network and its development. The article highlights influencing decisions regarding modelling of intermodal terminals network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abacoumkin C, Ballis A (2004) Development of an expert system for the evaluation of conventional and innovative technologies in the intermodal transport area. Eur J Oper Res 152(2):410–419

    Article  MATH  Google Scholar 

  2. Alicke K (2005) Modeling and optimization of the intermodal terminal Mega Hub. Container terminals and automated transport systems. Springer, Berlin, Heidelberg, pp 307–323

    Chapter  Google Scholar 

  3. Arnold P, Peeters D, Thomas I (2004) Modelling a rail/road intermodal transportation system. Transp Res Part E Logist Transp Rev 40(3):255–270

    Article  Google Scholar 

  4. Balaban AT (1985) Applications of graph theory in chemistry. J Chem Inf Comput Sci 25(3):334–343

    Article  Google Scholar 

  5. Behrens C, Pels E (2012) Intermodal competition in the London-Paris passenger market: high-speed rail and air transport. J Urban Econ 71(3):278–288

    Article  Google Scholar 

  6. Bellert S, Woźniacki H (1968) Analiza i synteza układów elektrycznych metodą liczb strukturalnych. WNT, Warszawa [in Polish: Analysis and synthesis of electrical systems by the method of structural numbers]

    Google Scholar 

  7. Bhattacharya A, Kumar SA, Tiwari MK, Talluri S (2014) An intermodal freight transport system for optimal supply chain logistics. Transp Res Part C Emerg Technol 38:73–84

    Article  Google Scholar 

  8. Bławat D, Kalkowski K (2012) Transport intermodalny w Polsce-teraźniejszość i przyszłość. VIII Konferencja Logistyczna „Logistyka-współczesne trendy i wyzwania”, Łódź [In Polish: Intermodal transport in Poland—present and future. The 8th logistic conference “Logistics—contemporary trends and challenges”]

    Google Scholar 

  9. Bontekoning YM, Macharis C, Trip JJ (2004) Is a new applied transportation research field emerging?—a review of intermodal rail–truck freight transport literature. Transp Res Part A Policy Pract 38(1):1–34

    Article  Google Scholar 

  10. Bronsztejn IN, Siemiendiajew KA, Musiol G, Mühlig H (2007) Nowoczesne kompendium matematyki. PWN, Warszawa [In Polish: Modern compendium of mathematics]

    Google Scholar 

  11. Burgholzer W, Bauer G, Posset M, Jammernegg W (2013) Analysing the impact of disruptions in intermodal transport networks: a micro simulation-based model. Decis Support Syst 54(4):1580–1586

    Article  Google Scholar 

  12. Button K (2006) Transportation economics: some developments over the past 30 years. J Transp Res Forum 45:7–30

    Google Scholar 

  13. Cho JH, Kim HS, Choi HR (2012) An intermodal transport network planning algorithm using dynamic programming—a case study: from Busan to Rotterdam in intermodal freight routing. Appl Intell 36(3):529–541

    Article  Google Scholar 

  14. Choong ST, Cole MH, Kutanoglu E (2002) Empty container management for intermodal transportation networks. Transp Res Part E Logist Transp Rev 38(6):423–438

    Article  Google Scholar 

  15. Chu CY, Huang WC (2005) Determining container terminal capacity on the basis of an adopted yard handling system. Transp Rev 25(2):181–199

    Article  Google Scholar 

  16. Cieśla M, Mrówczyńska B, Opasiak T (2017) Multimodal transport risk assessment with risk mapping. Scientific Papers of Silesian University of Technology. Org Manag Ser 105:31–39

    Google Scholar 

  17. Crainic TG (2003) Long-haul freight transportation. Handbook of transportation science. Springer, Boston, pp 451–516

    Chapter  Google Scholar 

  18. Crainic TG, Kim KH (2007) Intermodal transportation. Handbooks Oper Res Manag Sci 14:467–537

    Article  Google Scholar 

  19. Czermański E (2012) Rozwój funkcji transportowo-logistycznych na Pomorzu. Logistyka 3:369–380 [In Polish: Development of transport and logistics functions in Pomerania]

    Google Scholar 

  20. Dekker R, van Asperen E, Ochtman G, Kusters W (2009) Floating stocks in FMCG supply chains: using intermodal transport to facilitate advance deployment. Int J Phys Distrib Logist Manag 39(8):632–648

    Article  Google Scholar 

  21. Dobruszkes F (2011) High-speed rail and air transport competition in Western Europe: a supply-oriented perspective. Transp Policy 18(6):870–879

    Google Scholar 

  22. Economic Commission for Europe (2001) Terminology on combined transport. United Nations Economic Commission for Europe, New York and Geneva

    Google Scholar 

  23. Euler L (1741) Solutio problematis ad geometriam situs. Commentarii Academiae Scientiarum Imperialis Pietropitanae 8:128–140

    Google Scholar 

  24. European Commission (2001) White paper European transport policy for 2010. Time to decide. Brief presentation. COM(2001)370

    Google Scholar 

  25. European Commission (2011) White paper. Roadmap to a single European transport area—towards a competitive and resource-efficient transport system. Publications Office of the European Union, Luxembourg

    Google Scholar 

  26. European Commission Communication (1997) Intermodal transport: intermodality of goods transport. COM(97)243

    Google Scholar 

  27. EUROSTAT (2017) EU transport in figures—statistical pocketbook 2017. https://doi.org/10.2832/041248

  28. Fechner I (2004) Centra logistyczne: cel, realizacja, przyszłość. Instytut Logistyki i Maazynowania [in Polish: Logistics centers: purpose, implementation, future]

    Google Scholar 

  29. Gąska D, Margielewicz J (2018) Development of the Silesian Logistic Centres in terms of handling improvement in intermodal transport on the east-west routes. Transport systems and delivery of cargo on east-west routes. Springer, Cham, pp 275–301

    Chapter  Google Scholar 

  30. Givoni M, Banister D (eds) (2010) Integrated transport: from policy to practice. Routledge

    Google Scholar 

  31. Grötschel M, Yuan Y (2012) Euler, Mei-Ko Kwan, Konigsberg, and a Chinese Postman. Documenta Mathematica, Extra Volume ISMP 43–50

    Google Scholar 

  32. Hämäläinen E, Inkinen T (2018) Intermodal transportation costs. In: ICTS 2018 conference Portorož, 14–15 June 2018

    Google Scholar 

  33. Hanssen TES, Mathisen TA, Jørgensen F (2012) Generalized transport costs in intermodal freight transport. Procedia Soc Behav Sci 54:189–200

    Article  Google Scholar 

  34. Heaver T, Meersman H, Van de Voorde E (2001) Co-operation and competition in international container transport: strategies for ports. Marit Policy Manag 28(3):293–305

    Article  Google Scholar 

  35. Herholzer C (1873) Uber die Möglichkeit einen ininzug ohne wiederholung und ohne unterbrechung zu umfahren. Math Ann 6(1):30–32

    Article  MathSciNet  Google Scholar 

  36. Jacyna M, Pyza D, Jachimowski R (2018) Transport intermodalny. Projektowanie terminali przeładunkowych. Wydawnictwo Naukowe PWN, Warszawa [In Polish: Intermodal transport. Designing of transshipment terminals]

    Google Scholar 

  37. Janic M (2007) Modelling the full costs of an intermodal and road freight transport network. Transp Res Part D Transp Environ 12(1):33–44

    Article  Google Scholar 

  38. König D (1936) Theorie der endlichen und undendlichen graphen, Leipzig

    Google Scholar 

  39. Kostrzewski A, Nader M (2015) Analiza zagadnienia projektowania lądowych terminali przeładunkowych dla transportu intermodalnego. Logistyka 5:397–407 [In Polish: Analysis of the issue of intermodal terminals designing]

    Google Scholar 

  40. Krettek O, Grajnert J (2001) Logistyka w transporcie szynowym. Nawigator 13. Wrocław: Oficyna Wydawn. Politechn. [in Polish: Logistics in rail transport]

    Google Scholar 

  41. Kwaśniowski S, Zając M, Zając P (2010) Ruchoma droga w obliczu komodalności. Logitrans–VII Konferencja Naukowo–Techniczna, Szczecin, pp 227–239 [in Polish: Rolling highway in face of co-modality]

    Google Scholar 

  42. Leinbach TR (2007) Globalized freight transport: intermodality, e-commerce, logistics and sustainability. Edward Elgar Publishing

    Google Scholar 

  43. Limbourg S, Jourquin B (2009) Optimal rail-road container terminal locations on the European network. Transp Res Part E Logist Transp Rev 45(4):551–563

    Article  Google Scholar 

  44. Lin CC, Chiang YI, Lin SW (2014) Efficient model and heuristic for the intermodal terminal location problem. Comput Oper Res 51:41–51. https://doi.org/10.1016/j.cor.2014.05.004

    Article  MathSciNet  MATH  Google Scholar 

  45. Lowe D (2005) Intermodal freight transport. Butterworth-Heinemann, Oxford, UK

    Book  Google Scholar 

  46. Macharis C, Pekin E (2009) Assessing policy measures for the stimulation of intermodal transport: a GIS-based policy analysis. J Transp Geogr 17(6):500–508

    Article  Google Scholar 

  47. MacHaris C, Van Mierlo J, Van Den Bossche P (2007) Combining intermodal transport with electric vehicles: towards more sustainable solutions. Transp Plan Technol 30(2–3):311–323

    Article  Google Scholar 

  48. Macharis C, Caris A, Jourquin B, Pekin E (2011) A decision support framework for intermodal transport policy. Eur Transp Res Rev 3(4):167–178

    Article  Google Scholar 

  49. Mathisen TA, Hanssen TES (2014) The academic literature on intermodal freight transport. Transp Res Procedia 3:611–620

    Article  Google Scholar 

  50. Meisel F, Kirschstein T, Bierwirth C (2013) Integrated production and intermodal transportation planning in large scale production–distribution-networks. Transp Res Part E Logist Transp Rev 60:62–78

    Article  Google Scholar 

  51. Miklińska J (2009) Współpraca usługodawców centrum logistycznego a realizacja koncepcji komodalności transportu. Logistyka 13:1–13 [in Polish: The cooperation among logistic operators and the realization of the concept of comodal transport]

    Google Scholar 

  52. Murawski J (2016) Optymalizacja sieci logistycznych transportu intermodalnego. Prace Naukowe Politechniki Warszawskiej. Transport 111:427–436 [in Polish: Optimization of logistic networks of intermodal transport]

    Google Scholar 

  53. Nemoto T, Browne M, Visser J, Castro J (2006) Intermodal transport and city logistics. In: Recent advances in city logistics, pp 15–30

    Google Scholar 

  54. Osowski S (2011) Wybrane zagadnienia teorii obwodów, Warszawa [In Polish: Selected problems of circuit theory]

    Google Scholar 

  55. PCC Intermodal (2018). http://www.pccintermodal.pl/rozklad-polaczen/

  56. Pekin E, Macharis C, Meers D, Rietveld P (2013) Location analysis model for Belgian Intermodal Terminals: importance of the value of time in the intermodal transport chain. Comput Ind 64(2):113–120

    Article  Google Scholar 

  57. Petrella JR (2011) Use of graph theory to evaluate brain networks: a clinical tool for a small world? Radiology 259(2):317–320

    Article  Google Scholar 

  58. Rizzoli AE, Fornara N, Gambardella LM (2002) A simulation tool for combined rail/road transport in intermodal terminals. Math Comput Simul 59(1–3):57–71

    Article  MathSciNet  MATH  Google Scholar 

  59. Robichaud L, Boisvert M, Robert J (1968) Grafy przepływu sygnałów, Warszawa [In Polish: Signal flow graphs]

    Google Scholar 

  60. Ronald N, Yang J, Thompson RG (2016) Exploring co-modality using on-demand transport systems. Transp Res Procedia 12:203–212. https://doi.org/10.1016/j.trpro.2016.02.059

    Article  Google Scholar 

  61. Rosa G (2013) Uwarunkowania rozwoju transportu intermodalnego w Polsce. Zeszyty Naukowe Uniwersytetu Szczecińskiego. Problemy Transportu i Logistyki, (22 Transport intermodalny w Polsce. Uwarunkowania i perspektywy rozwoju), pp 281–294 [in Polish: Conditions for the development of intermodal transport in Poland]

    Google Scholar 

  62. Sonderegger M (2011) Applications of graph theory to an English rhyming corpus. J Comput Speech Lang 25(3):655–678

    Article  Google Scholar 

  63. Sommar R, Woxenius J (2007) Time perspectives on intermodal transport of consolidated cargo. Eur J Transp Infrastruct Res 7(2):163–182

    Google Scholar 

  64. SteadieSeifi M, Dellaert NP, Nuijten W, Van Woensel T, Raoufi R (2014) Multimodal freight transportation planning: a literature review. Eur J Oper Res 233(1):1–15

    Article  MATH  Google Scholar 

  65. Świder J (1980) Grafy hybrydowe w modelowaniu drgających układów mechanicznych z liniowymi sprzężeniami, Rozprawa doktorska. Politechnika Śląska, Gliwice [In Polish: Hybrid graphs in the modeling of vibrating mechanical systems with linear couplings]

    Google Scholar 

  66. Tarapata Z (2012) Czy sieci rządzą światem? Od Eulera do Barabasiego, Biuletyn Instytutu Systemów Informatycznych 10:31–51 [In Polish: Do networks rule the world? From Euler to Barabasi]

    Google Scholar 

  67. Trip JJ, Bontekoning Y (2002) Integration of small freight flows in the intermodal transport system. J Transp Geogr 10(3):221–229

    Article  Google Scholar 

  68. Tsamboulas D, Vrenken H, Lekka AM (2007) Assessment of a transport policy potential for intermodal mode shift on a European scale. Transp Res Part A Policy Pract 41(8):715–733

    Article  Google Scholar 

  69. UNECE (2009) Illustrated glossary for transport statistics. ISBN: 978-92-79-17082-9

    Google Scholar 

  70. Winebrake JJ, Corbett JJ, Falzarano A, Hawker JS, Korfmacher K, Ketha S, Zilora S (2008) Assessing energy, environmental, and economic tradeoffs in intermodal freight transportation. J Air Waste Manag Assoc 58(8):1004–1013

    Article  Google Scholar 

  71. Wilson RJ (2000) Wprowadzenie do teorii grafów. Warszawa [In Polish: Introduction to graph theory]

    Google Scholar 

  72. Wojnarowki J (1981) Zastosowanie grafów w analizie drgań układów mechanicznych. Warszawa [In Polish: The use of graphs in the analysis of vibrations of mechanical systems]

    Google Scholar 

  73. Wolfram Mathematica (2018). http://www.wolfram.com/mathematica/

  74. Woxenius J (2007) Generic framework for transport network designs: applications and treatment in intermodal freight transport literature. Transp Rev 27:733–749

    Article  Google Scholar 

  75. Wronka J, Mindur M (2010) Kolejowe przewozy intermodalne Zachód–Wschód–Zachód. Zeszyty Naukowe. Problemy Transportu i Logistyki/Uniwersytet Szczeciński (13):389–398 [in Polish: Intermodal railway transport West-East-West]

    Google Scholar 

  76. Żak J, Jacyna-Gołda I, Lewczuk K, Kłodawski M, Jachimowski R (2013) National logistics network design with regard to transport co-modality. Logist Transp 3(19):57–64

    Google Scholar 

  77. Zhang M, Wiegmans B, Tavasszy L (2013) Optimization of multimodal networks including environmental costs: a model and findings for transport policy. Comput Ind 64(2):136–145

    Article  Google Scholar 

  78. Zhang YH, Lin BL, Liang D, Gao HY (2006) Research on a generalized shortest path method of optimizing intermodal transportation problems. J China Railw Soc 4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Gąska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cieśla, M., Margielewicz, J., Gąska, D. (2020). Intermodal Terminals Network Modelling. In: Sładkowski, A. (eds) Modelling of the Interaction of the Different Vehicles and Various Transport Modes. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-11512-8_5

Download citation

Publish with us

Policies and ethics