Tests of General Relativity with the LARES Satellites

  • Ignazio CiufoliniEmail author
  • Antonio Paolozzi
  • Erricos C. Pavlis
  • Richard Matzner
  • Rolf König
  • John Ries
  • Giampiero Sindoni
  • Claudio Paris
  • Vahe Gurzadyan
Part of the Fundamental Theories of Physics book series (FTPH, volume 196)


LARES (LAser RElativity Satellite) developed by the Italian Space Agency (ASI) is a laser-ranged satellite successfully launched in February 2012 by ESA (European Space Agency). A second ASI laser-ranged satellite, LARES 2, is scheduled for launch by ESA at the end of 2019. Here we describe the main scientific objectives achieved and achievable by LARES and LARES 2, both in General Relativity and in space geodesy and geodynamics. Among the main tests achieved by LARES is a 5% test of frame-dragging, a fundamental and intriguing prediction of General Relativity. The LARES 2 satellite together with the laser-ranged satellite LAGEOS of NASA, is aimed to provide a 0.2% test of frame-dragging together with other relevant tests and determinations in fundamental physics, space geodesy and geodynamics.


  1. 1.
    I. Ciufolini, A. Paolozzi, E. C. Pavlis, R. Koenig, J. Ries, V. Gurzadyan, R. Matzner, R. Penrose, G. Sindoni, C. Paris, H. Khachatryan, S. Mirzoyan, A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth’s dragging of inertial frames. Eur. Phys. J. 76, 120 (2016)Google Scholar
  2. 2.
    A. Paolozzi, I. Ciufolini, LARES successfully launched in orbit: satellite and mission description. Acta Astronautica 91, 313–321 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    M.R. Pearlman, J.J. Degnan, J.M. Bosworth, The international laser ranging service. Adv. Space Res. 30, 135143 (2002)CrossRefGoogle Scholar
  4. 4.
    S.C. Cohen, R.W. King, R. Kolenkiewicz, R.D. Rosen, B.E. Schutz (Eds.), LAGEOS scientific results. J. Geophys. Res. 90(B11), 9215–9438 (1985)Google Scholar
  5. 5.
    B.D. Tapley, S. Bettadpur, M. Watkins, C. Reigber, The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31(9) (2004)CrossRefGoogle Scholar
  6. 6.
    K.S. Thorne, R.H. Price, D.A. Macdonald, The Membrane Paradigm (Yale University Press, NewHaven, 1986)zbMATHGoogle Scholar
  7. 7.
    I. Ciufolini, Dragging of inertial frames. Nature 449, 41 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A. Einstein, Gravitation, in Letter to Ernst Mach, 25 June 1913, ed. by C. Misner, K.S. Thorne, J.A. Wheeler (Freeman, San Francisco, 1973), p. 544Google Scholar
  9. 9.
    B.P. Abbott et al. Binary Black Hole Mergers in the first Advanced LIGO Observing Run. Phys. Rev. X 6, 041015 (2016)Google Scholar
  10. 10.
    J.M. Bardeen, J.A. Petterson, The Lense-Thirring effect and accretion disks around Kerr black holes. ApJ 195, L65 (1975)ADSCrossRefGoogle Scholar
  11. 11.
    C. Nixon, A. King, Do jets precess... or even move at all? ApL 765, L7 (2013)Google Scholar
  12. 12.
    I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, 1995)zbMATHGoogle Scholar
  13. 13.
    J. Lense, H. Thirring, Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918)zbMATHGoogle Scholar
  14. 14.
    J. Lense, H. Thirring, English translation of [13] by B. Mashhoon, F.W. Hehl, D.S. Theiss. Gen. Relativ. Gravit. 16, 711 (1984)Google Scholar
  15. 15.
    I. Ciufolini et al., Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science 279(5359), 2100–2103 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    I. Ciufolini, E.C. Pavlis, R. Peron, Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 11, 527–550 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    I. Ciufolini, E.C. Pavlis, J. Ries, R. Koenig, G. Sindoni, A. Paolozzi, H. Neumayer, Gravitomagnetism and its measurement with laser ranging to the LAGEOS satellites and GRACE Earth gravity models, in General Relativity and John Archibald Wheeler, vol. 367 (Springer GmbH, Berlino DEU, 2010), pp. 371434Google Scholar
  19. 19.
    J.C. Ries, R.J. Eanes, M.M. Watkins, Confirming the framedragging effect with satellite laser ranging, in 16th international workshop on laser ranging, Poznan, Poland, 1317 October 2008 (2008)Google Scholar
  20. 20.
    J. Ries, Relativity in satellite laser ranging, in IAU Symposium 261. Relativity in fundamental astronomy: dynamics, reference frames, and data analysis (Virginia Beach, VA, USA, 27 April–1 May 2009)Google Scholar
  21. 21.
    R. König, B. Moreno-Monge, G. Michalak, Some aspects and perspectives of measuring Lense-Thirring with GNSS and geodetic satellites, in Second International LARES Science Workshop, Accademia dei Lincei, Rome (2012)Google Scholar
  22. 22.
    R. König, I. Ciufolini, Measurement of frame-dragging with geodetic satellites based on gravity field models from CHAMP, GRACE and beyond, in Current VolumeGoogle Scholar
  23. 23.
    I. Ciufolini, A comprehensive introduction to the LAGEOS gravimetric experiment. Int. J. Mod. Phys. A 4, 3083–3145 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    I. Ciufolini, On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cimento A 109, 1709–1720 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    W.M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966)zbMATHGoogle Scholar
  26. 26.
    I. Ciufolini, On the orbit of the LARES satellite (2006). arXiv:gr-qc/0609081v1
  27. 27.
    J. Ries, S. Bettadpur, R. Eanes, Z. Kang, U. Ko, C. McCullough, P. Nagel, N. Pie, S. Poole, T. Richter, H. Save, B. Tapley, Development and evaluation of the global gravity model GGM05. CSR-16-02, Center for Space Research. (The University of Texas at Austin, 2016)Google Scholar
  28. 28.
    I. Ciufolini, A. Paolozzi, E. Pavlis, J. Ries, R. Koenig, R. Matzner, G. Sindoni, The LARES space experiment: LARES orbit, error analysis and satellite structure, in General Relativity and John Archibald Wheeler, vol. 367 (Springer-Verlag GmbH, Berlino - DEU, 2010), pp. 467–492Google Scholar
  29. 29.
    I. Ciufolini et al., Reply to “A comment on “A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model, ed. by I. Ciufolini et al.,” Iorio”. EPJ C 78, 880 (2018)Google Scholar
  30. 30.
    I. Ciufolini, B. Moreno Monge, A. Paolozzi, R. König, G. Sindoni, G. Michalak, Monte Carlo Simulations of the LARES space experiment to test General Relativity and fundamental physics. Class. Quantum Gravity 30, 235009 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, R. Koenig, J.C. Ries, R. Matzner, V. Gurzadyan, R. Penrose, D. Rubincam, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES 2 space experiment. Eur. Phys. J. Plus 132(8), 336 (2017)Google Scholar
  32. 32.
    I. Ciufolini, E.C. Pavlis, G. Sindoni, J.C. Ries, A. Paolozzi, R. Matzner, R. Koenig, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: II. Monte Carlo simulations and covariance analyses of the LARES 2 experiment. Eur. Phys. J. Plus 132(8), 337 (2017)Google Scholar
  33. 33.
    I. Ciufolini, R. Matzner, V.G. Gurzadyan, R. Penrose, A new laser-ranged satellite for General Relativity and space geodesy: III. De Sitter effect and the LARES 2 space experiment. Eur. Phys. J. C 77, 819 (2017)Google Scholar
  34. 34.
    I. Ciufolini, R.A. Matzner, J. Feng, D.P. Rubincam, E.C. Pavlis, J.C. Ries, G. Sindoni, A. Paolozzi, C. Paris, A new laser-ranged satellite for General Relativity and Space Geodesy IV. Thermal drag and the LARES 2 space experiment. Eur. Phys. J. Plus 133, 333 (2018)Google Scholar
  35. 35.
    I. Ciufolini, Measurement of the Lense-Thirring drag on high-altitude laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    I. Ciufolini, Theory and Experiments in General Relativity and other Metric Theories. Ph.D. Dissertation, Univ. of Texas, Austin, Pub. Ann Arbor, Michigan, 1984Google Scholar
  37. 37.
    B. Tapley, J.C. Ries, R.J. Eanes, M.M. Watkins, NASA-ASI Study on LAGEOS III. Center for Space Research Report CSR-89-03, The University of Texas at Austin (1989)Google Scholar
  38. 38.
    I. Ciufolini et al., ASI-NASA Study on LAGEOS III (CNR, Rome, Italy, 1989)Google Scholar
  39. 39.
    J.C. Ries. Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite. Ph.D. Dissertation, Center for Space Research Report CSR-89-05, The University of Texas at Austin (1989)Google Scholar
  40. 40.
    G.E. Peterson. Estimation of the Lense-Thirring precession using laser-ranged satellites. Ph.D. Dissertation, The University of Texas at Austin (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ignazio Ciufolini
    • 1
    • 2
    Email author
  • Antonio Paolozzi
    • 3
  • Erricos C. Pavlis
    • 4
  • Richard Matzner
    • 5
  • Rolf König
    • 6
  • John Ries
    • 7
  • Giampiero Sindoni
    • 3
  • Claudio Paris
    • 2
  • Vahe Gurzadyan
    • 8
  1. 1.Dip. Ingegneria dell’InnovazioneUniversità del SalentoLecceItaly
  2. 2.Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”RomeItaly
  3. 3.Scuola di Ingegneria AerospazialeSapienza Università di RomaRomeItaly
  4. 4.Joint Center for Earth Systems Technology (JCET)University of MarylandBaltimore CountyUSA
  5. 5.Theory GroupUniversity of Texas at AustinAustinUSA
  6. 6.Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZWesslingGermany
  7. 7.Center for Space ResearchUniversity of Texas at AustinAustinUSA
  8. 8.Center for Cosmology and AstrophysicsAlikhanian National LaboratoryYerevanArmenia

Personalised recommendations