Skip to main content

Measurement of Frame Dragging with Geodetic Satellites Based on Gravity Field Models from CHAMP, GRACE and Beyond

  • Chapter
  • First Online:
Book cover Relativistic Geodesy

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 196))

  • 988 Accesses

Abstract

The experimental measurement of frame-dragging or the Lense-Thirring (LT) effect based on Satellite Laser Ranging (SLR) observations to the LAGEOS satellites was successfully demonstrated with an accuracy of about 10%. Here we look in detail into the effect of the node drift induced by the time variable part of the C(2,0) term of the gravity field model describing the flattening of the Earth. We demonstrate that errors in C(2,0) can effectively be taken care of by analyzing two satellites for the LT measurement. We also adopt some recent gravity field models in order to independently repeat and extend the LT experiments so far. The gravity field models used for this are derived either partly depending on LAGEOS SLR observations or completely independent from LAGEOS, and based on dedicated gravity field satellite missions like CHAMP, GRACE and GOCE. It turns out that from all the gravity field models tested the claimed accuracy of 10% of the LT measurement can be confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Einstein, Letter to Ernst Mach, 25 June 1913, in Gravitation ed. by C. Misner, K.S. Thorne, J.A. Wheeler (Freeman, San Francisco, 1973), p. 544

    Google Scholar 

  2. J. Lense, H. Thirring, Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156 (1918)

    Google Scholar 

  3. K.S. Thorne, R.H. Price, D.A. Macdonald, The Membrane Paradigm (Yale University Press, New Haven, 1986)

    MATH  Google Scholar 

  4. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. I. Ciufolini, Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986)

    Article  ADS  Google Scholar 

  6. I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Perez-Mercader, Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science 279, 2100–2103 (1998)

    Article  ADS  Google Scholar 

  7. F.G. Lemoine, S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt, USA (1998)

    Google Scholar 

  8. R.L. Spencer, LAGEOS - a geodynamics tool in the making. J. Geol. Educ. 25(2), 38–42 (1977)

    Article  Google Scholar 

  9. ILRS. Lageos-1/-2, https://ilrs.cddis.eosdis.nasa.gov/missions/satellite_missions/current_missions/lag1_general.html. Accessed 12 March 2018

  10. I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004)

    Article  ADS  Google Scholar 

  11. C. Reigber, R. Schmidt, F. Flechtner, R. Koenig, U. Meyer, K.-H. Neumayer, P. Schwintzer, S.Y. Zhu, An Earth gravity field model complete to degree and order 150 from GRACE\(:\) EIGEN-GRACE02S. J. Geodyn. 39(1), 1–10 (2005)

    Article  Google Scholar 

  12. B.D. Tapley, S. Bettadpur, M.M. Watkins, Ch. Reigber, The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004)

    Article  ADS  Google Scholar 

  13. T.V. Martin, W.F. Eddy, D.D. Rowlands, D.E. Pavlis, GEODYN II system description. EG&G Contractor Report, Lanham, MD (1987)

    Google Scholar 

  14. S. Zhu, Ch. Reigber, R. Koenig, Integrated adjustment of CHAMP, GRACE, and GPS data. J. Geod. 78(1–2), 103–108 (2004)

    ADS  Google Scholar 

  15. B.E. Schutz, B.D. Tapley, UTOPIA: University of Texas Orbit Processor. Inst. for Advanced Study in Orbital Mechanics, University of Texas at Austin, IASOM TR 80-1 (1980)

    Google Scholar 

  16. R. Koenig, B. Moreno-Monge, G. Michalak, Some aspects and perspectives of measuring Lense-Thirring with GNSS and geodetic satellites, in Second International LARES Science Workshop, Accademia dei Lincei, Rome (2012)

    Google Scholar 

  17. J.C. Ries, R.J. Eanes, M.M. Watkins, Confirming the frame-dragging effect with satellite laser ranging, in Proceedings 16th international workshop on laser ranging, http://cddis.gsfc.nasa.gov/lw16/docs/presentations/sci_3_Ries.pdf. Accessed 30 April 2018

  18. I. Ciufolini, A. Paolozzi, E.C. Pavlis, J. Ries, R. Koenig, R. Matzner, G. Sindoni, The LARES space experiment: LARES orbit, error analysis and satellite structure, in John Archibald Wheeler and General Relativity, ed. by I. Ciufolini, R. Matzner (Springer, Berlin, 2010), pp. 371–434

    Chapter  Google Scholar 

  19. I. Ciufolini, A. Paolozzi, E.C. Pavlis, R. Koenig, J. Ries, V. Gurzadyan, R. Matzner, R. Penrose, G. Sindoni, C. Paris, H. Khachatryan, S. Mirzoyan, A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Eur. Phys. J. C 76, 120 (2016)

    Article  ADS  Google Scholar 

  20. I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, R. Koenig, J.C. Ries, R. Matzner, V. Gurzadyan, R. Penrose, D. Rubincam, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment. Eur. Phys. J. Plus 132, 336 (2017)

    Google Scholar 

  21. C. Foerste, S.L. Bruinsma, R. Shako, J.C. Marty, F. Flechtner, O. Abrikosov, C. Dahle, J.M. Lemoine, K.H. Neumayer, R. Biancale, F. Barthelmes, R. Koenig, G. Balmino, EIGEN-6C - A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts, vol. 13, EGU2011-3242-2, EGU General Assembly (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf König .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

König, R., Ciufolini, I. (2019). Measurement of Frame Dragging with Geodetic Satellites Based on Gravity Field Models from CHAMP, GRACE and Beyond. In: Puetzfeld, D., Lämmerzahl, C. (eds) Relativistic Geodesy. Fundamental Theories of Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-11500-5_14

Download citation

Publish with us

Policies and ethics