Operationalization of Basic Relativistic Measurements

  • Bruno HartmannEmail author
Part of the Fundamental Theories of Physics book series (FTPH, volume 196)


We present a novel phenomenological foundation of relativistic physics. That means, we focus on the observable entities and make no mathematical preassumptions. Like Einstein for relativistic kinematics we start from vivid measurement operations and simple natural principles. Seeking, formulating and refining operational definitions reveals the physical meaning. We grasp the basic observables (length, duration, inertial mass, momentum, energy) in a physical way. We define an order of energy and impulse from a physical comparison. Each step (the construction of “sufficiently constant” reference devices and of a machinery, which “functions” for a basic measurement) follows from practical requirements. One can directly count the tangible measurement units and ultimately derive the fundamental equations (e.g. the kinetic energy-velocity relation or the mass-energy equivalence).


  1. 1.
    R. Duit. Teaching and learning of energy in K-12 education, ed. by R.F. Chen, A. Eisenkraft, D. Fortus, J. Krajcik, K. Neumann, J. Nordine, A. Scheff (Springer, Heidelberg, 2014), pp. 153Google Scholar
  2. 2.
    D. Hammer, Student ressources for learning introductory physics. Am. J. Phys. 68, 52 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    C. Gerthsen, H. Vogel, Gerthsen Physik (Springer, Berlin, 1995)Google Scholar
  4. 4.
    H.V. Helmholtz, Zählen und Messen, erkenntnistheoretisch betrachtet. Philosophische Vorträge und Aufsätze, ed. by H. Hörz, S. Wollgast (Akademie Verlag, Berlin, 1971), pp. 109Google Scholar
  5. 5.
    B. Hartmann, Operationalization of Relativistic Motion (Kinematics) (2012), arXiv:1205.2680
  6. 6.
    P. Janich, Das Maß der Dinge: Protophysik von Raum Zeit und Materie (Suhrkamp, 1997)Google Scholar
  7. 7.
    A. Einstein, Grundzüge der Allgemeinen Relativitätstheorie (Springer, Berlin, 2002)Google Scholar
  8. 8.
    J. Wallot, Grössengleichungen Einheiten und Dimensionen (Johann Ambrosius Barth, Leipzig, 1952)zbMATHGoogle Scholar
  9. 9.
    H. Hertz, Einleitung zur Mechanik. Zur Grundlegung der theoretischen Physik, ed. by R. Rompe, H.-J. Treder (Akademie Verlag, Berlin, 1984), pp. 82Google Scholar
  10. 10.
    R.U. Sexl, H.K. Urbantke, Relativity, Groups, Particles - Special Relativity and Relativistic Symmetry in Field and Particle Physics (Springer, Berlin, 2001)Google Scholar
  11. 11.
    H. Weyl, Philosophy of Mathematics and Natural Science (Princeton University Press, Princeton, 1949), p. 139Google Scholar
  12. 12.
    A. Sommerfeld, Mechanik (Verlag Harry Deutsch, Thun, 1994), pp. 4Google Scholar
  13. 13.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics - Mainly Mechanics, Radiation and Heat (Addison-Wesley Publishing Company, Boston, 1977), pp. 4–1–4–8Google Scholar
  14. 14.
    B. Hartmann, Operationalization of Relativistic Energy-Momentum. Dissertation, Humboldt-University, urn:nbn:de:kobv:11-100233941 (2015), pp. 115–138Google Scholar
  15. 15.
    O. Schlaudt, Messung als konkrete Handlung - Eine kritische Untersuchung über die Grundlagen der Bildung quantitativer Begriffe in den Naturwissenschaften (Verlag Königshausen & Neumann, Würzburg, 2009)Google Scholar
  16. 16.
    B. Hartmann, Operationalization of Basic Observables in Mechanics (2015). arXiv:1504.03571
  17. 17.
    M. Giovanelli, But one must not legalize the mentioned sin: phenomenological vs. dynamical treatments of rods and clocks in Einstein’s thought. Stud. Hist. Philos. Mod. Phys. 48, 20–44 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Humboldt UniversityBerlinGermany

Personalised recommendations