Skip to main content

Understanding Peroxisome Proliferator-Activated Receptors: From the Structure to the Regulatory Actions on Metabolism

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1127))

Abstract

Peroxisome proliferator-activated receptors (PPARs) are multi-domains proteins, belonging to the superfamily of nuclear receptors, which mainly act as ligand-activated transcription factors. A variety of lipophilic molecules, including long-chain polyunsaturated fatty acids and eicosanoids, are capable of binding to PPAR, although the nature of the physiological ligands is still under debate. PPARs regulate the expression of a set of genes involved in glucose and lipid metabolism as well as in the control of inflammatory responses. Herein we review the main molecular and cellular events associated with the activation of PPARs and their effects on metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

15d-PGJ2 :

15-deoxy-Δ12,14-prostaglandinJ2

AF1 and AF2:

Activation function 1 and 2

AP-1:

Activating protein-1

BCL-6:

B-cell lymphoma 6 protein

C/EBPα and C/EBPβ:

CCAAT/enhancer-binding protein α and β

CBP:

CREB-binding protein

DBD:

DNA-binding domain

DR1:

Direct repeat-1

FA:

Fatty acid

FATP-1:

Fatty acid transport protein-1

FGF21:

Fibroblastic growth factor 21

FoxO1:

Forkhead box O1

Glut4:

Glucose transporter type 4

H12:

Helix 12

HDL:

High density lipoprotein

HETE:

Hydroxyeicosatetraenoic acid

HMGCS:

Hydroxymethylglutaryl-CoA synthase

HODE:

Hydroxyoctadecadienoic acid

LBD:

Ligand-binding domain

L-FABP:

Liver fatty acid binding protein

LPL:

Lipoprotein lipase

LXR:

Liver X receptor

N-CoR:

Nuclear receptor co-repressor

NF-κB:

Nuclear factor-kappa B

NR:

Nuclear receptors

PDK4:

Pyruvate dehydrogenase kinase 4

Pgtz:

Pioglitazone

PPARs:

Peroxisome proliferator-activated receptors

PPRE:

Peroxisome proliferator response elements

PUFA:

Long-chain polyunsaturated fatty acids

Rgtz:

Rosiglitazone

RXR:

Retinoid X receptor

SMRT:

Silencing mediator of retinoid and thyroid signalling

SRC:

Steroid receptor co-activator

STAT3:

Signal transducer and activator of transcription 3

TAGs:

Triacylglycerides

TZD:

Thiazolidinedione

VLDL:

Very low density lipoprotein

References

  1. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  CAS  PubMed  Google Scholar 

  2. Desvergne B, Wahli W (1999) Peroxisome Proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688 

    CAS  PubMed  Google Scholar 

  3. Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43:527–550

    Article  CAS  PubMed  Google Scholar 

  4. Sher T, Yi HF, McBride OW, Gonzalez FJ (1993) cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 32:5598–5604

    Article  CAS  PubMed  Google Scholar 

  5. Yoshikawa T, Brkanac Z, Dupont BR, Xing G-Q, Leach RJ, Detera-Wadleigh SD (1996) Assignment of the human nuclear hormone receptor, NUC1 (PPARD), to chromosome 6p21.1–p21.2. Genomics 35:637–638

    Article  CAS  PubMed  Google Scholar 

  6. Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, et al (1995) Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr 4:281–299 

    Google Scholar 

  7. Pawlak M, Lefebvre P, Staels B (2012) General molecular biology and architecture of nuclear receptors. Curr Top Med Chem. Inserm. 12:486–504 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE et al (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. Cold Spring Harbor Laboratory Press. 6:329–344 

    Article  CAS  PubMed  Google Scholar 

  9. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palmer CN, Hsu MH, Griffin HJ, Johnson EF (1995) Novel sequence determinants in peroxisome proliferator signaling. J Biol Chem 270:16114–16121 

    Article  CAS  PubMed  Google Scholar 

  11. Juge-Aubry C, Pernin A, Favez T, Burger AG, Wahli W, Meier CA et al (1997) DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5′-flanking region. J Biol Chem 272:25252–25259

    Article  CAS  PubMed  Google Scholar 

  12. IJpenberg A, Jeannin E, Wahli W, Desvergne B (1997) Polarity and specific sequence requirements of Peroxisome Proliferator-activated receptor (PPAR)/Retinoid X receptor Heterodimer binding to DNA: a functional analysis of the malic enzyme gene. J Biol Chem 272:20108–20117 

    Article  CAS  PubMed  Google Scholar 

  13. Dna PR, Hsu M-H, Palmer CNA, Song W, Griffin KJ, Johnson EF (1998) A carboxyl-terminal extension of the zinc finger domain contributes to the specificity and polarity of peroxisome proliferator-activated receptor DNA Binding. J Biol Chem 273:27988–27997

    Article  Google Scholar 

  14. Lonard DM, O’malley BW (2007) Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. Elsevier 27:691–700

    Article  CAS  PubMed  Google Scholar 

  15. Guan H-P, Ishizuka T, Chui PC, Lehrke M, Lazar MA (2005) Corepressors selectively control the transcriptional activity of PPAR in adipocytes. Genes Dev 19:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McInerney EM, Rose DW, Flynn SE, Westin S, Mullen TM, Krones A et al (1998) Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev 12:3357–3368 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DiRenzo J, Söderstrom M, Kurokawa R, Ogliastro MH, Ricote M, Ingrey S et al (1997) Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Mol Cell Biol 17:2166–2176 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68:1145–1155 

    Article  CAS  PubMed  Google Scholar 

  19. Hu X, Lazar MA (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402:93–96

    Article  CAS  PubMed  Google Scholar 

  20. Koppen A, Kalkhoven E (2010) Brown vs white adipocytes: the PPARγ coregulator story. FEBS Lett 584:3250–3259

    Article  CAS  PubMed  Google Scholar 

  21. Frkic RL, Marshall AC, Blayo A, Pukala TL, Theodore M, Griffin PR et al (2018) Tumble and trap mechanism of the activation Helix. iScience:69–79

    Google Scholar 

  22. Chrisman IM, Nemetchek MD, de Vera IMS, Shang J, Heidari Z, Long Y et al (2018) Defining a conformational ensemble that directs activation of PPARγ. Nat Commun 9:1794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ et al (1999) Peroxisome proliferator-activated receptor α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J Biol Chem 274:32048–32054

    Article  CAS  PubMed  Google Scholar 

  24. Gervois P, Vu-Dac N, Kleemann R, Kockx M, Dubois G, Laine B et al (2001) Negative regulation of human fibrinogen gene expression by Peroxisome Proliferator-activated receptor α agonists via inhibition of CCAAT box/enhancer-binding protein β. J Biol Chem 276:33471–33477

    Article  CAS  PubMed  Google Scholar 

  25. Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM (2003) Transcriptional repression of Atherogenic inflammation: modulation by PPARδ. Science 302:453–457

    Article  CAS  PubMed  Google Scholar 

  26. Fan Y, Wang Y, Tang Z, Zhang H, Qin X, Zhu Y et al (2007) Suppression of pro-inflammatory adhesion molecules by PPAR- in human vascular endothelial cells. Arterioscler Thromb Vasc Biol 28:315–321 

    Article  PubMed  CAS  Google Scholar 

  27. Brunmeir R, Xu F (2018) Functional regulation of PPARs through post-translational modifications. Int J Mol Sci 19:1738

    Article  PubMed Central  CAS  Google Scholar 

  28. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP et al (2008) Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456:350–356

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zoete V, Grosdidier A, Michielin O (2007) Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim Biophys Acta Mol Cell Biol Lipids 1771:915–925

    Article  CAS  Google Scholar 

  30. Kroker AJ, Bruning JB (2015) Review of the structural and dynamic mechanisms of PPAR γ partial agonism. PPAR Res. Hindawi 2015:1–15

    Article  CAS  Google Scholar 

  31. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator- activated receptor-γ. Nature 395:137–143 

    Article  CAS  PubMed  Google Scholar 

  32. Bruning JB, Chalmers MJ, Prasad S, Busby SA, Kamenecka TM, He Y et al (2007) Partial agonists activate PPARγ using a Helix 12 independent mechanism. Structure 15:1258–1271

    Article  CAS  PubMed  Google Scholar 

  33. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engström O et al (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    Article  CAS  PubMed  Google Scholar 

  34. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA et al (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. Elsevier 95:927–937

    Article  CAS  PubMed  Google Scholar 

  35. Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE et al (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα. Nature 415:813–817

    Article  CAS  PubMed  Google Scholar 

  36. Kliewer SASASA, Sundseth SSSSS, Jones SASAA, Brown PJJPJ, Wisely GBB, Koble CSSCS et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94:4318–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors and. Proc Natl Acad Sci 94:4312–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krey G, Braissant O, L’Horset F, Kalkhoven E, Perroud M, Parker MG et al (1997) Fatty acids, Eicosanoids, and Hypolipidemic agents identified as Ligands of Peroxisome Proliferator-activated receptors by Coactivator-dependent receptor Ligand assay. Mol Endocrinol 11:779–791

    Article  CAS  PubMed  Google Scholar 

  39. Schopfer FJ, Lin Y, Baker PRS, Cui T, Garcia-Barrio M, Zhang J et al (2005) Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci U S A 102:2340–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pochetti G, Godio C, Mitro N, Caruso D, Galmozzi A, Scurati S et al (2007) Insights into the mechanism of partial agonism. J Biol Chem 282:17314–17324

    Article  CAS  PubMed  Google Scholar 

  41. Poulsen L la C, Siersbæk M, Mandrup S (2012) PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol. Elsevier Ltd 23:631–639

    Article  CAS  Google Scholar 

  42. Dubois V, Eeckhoute J, Lefebvre P, Staels B (2017) Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest 127:1202–1214

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cuaranta-Monroy I, Kiss M, Simandi Z, Nagy L (2015) Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells – revealing complexity through systems biology. Eur J Clin Investig 45:964–975

    Article  CAS  Google Scholar 

  44. Campolongo P, Roozendaal B, Trezza V, Cuomo V, Astarita G, Fu J et al (2009) Fat-induced satiety factor oleoylethanolamide enhances memory consolidation. Proc Natl Acad Sci 106:8027–8031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. LoVerme J, La Rana G, Russo R, Calignano A, Piomelli D (2005) The search for the palmitoylethanolamide receptor. Life Sci 77:1685–1698

    Article  CAS  PubMed  Google Scholar 

  46. Fang X, Dillon JS, Hu S, Harmon SD, Yao J, Anjaiah S et al (2007) 20-Carboxy-arachidonic acid is a dual activator of peroxisome proliferator-activated receptors α and γ. Prostaglandins Other Lipid Mediat 82:175–184

    Article  CAS  PubMed  Google Scholar 

  47. Narala VR, Adapala RK, Suresh MV, Brock TG, Peters-Golden M, Reddy RC (2010) Leukotriene B 4 is a physiologically relevant endogenous peroxisome proliferator-activated receptor-α agonist. J Biol Chem 285:22067–22074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62:720–733 

    Article  CAS  PubMed  Google Scholar 

  49. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in Ketotic states. Cell Metab 5:426–437

    Article  CAS  PubMed  Google Scholar 

  50. Peeters A, Baes M (2010) Role of PPARα in hepatic carbohydrate metabolism. PPAR Res 2010

    Google Scholar 

  51. Shah A, Rader DJ, Millar JS (2010) The effect of PPAR-α agonism on apolipoprotein metabolism in humans. Atherosclerosis 210:35–40

    Article  CAS  PubMed  Google Scholar 

  52. Remick J, Weintraub H, Setton R, Offenbacher J, Fisher E, Schwartzbard A (2008) Fibrate therapy. Cardiol Rev 16:129–141

    Article  PubMed  Google Scholar 

  53. Wierzbicki AS (2009) Fibrates in the treatment of cardiovascular risk and atherogenic dyslipidaemia. Curr Opin Cardiol 24:372–379

    Article  PubMed  Google Scholar 

  54. Wierzbicki AS (2010) Fibrates: no ACCORD on their use in the treatment of dyslipidaemia. Curr Opin Lipidol 21:352–358

    Article  CAS  PubMed  Google Scholar 

  55. Wang D, Liu B, Tao W, Hao Z, Liu M (2015) Fibrates for secondary prevention of cardiovascular disease and stroke. Cochrane Database Syst Rev:CD009580

    Google Scholar 

  56. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ et al (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell. Elsevier 3:397–403 

    Article  CAS  PubMed  Google Scholar 

  57. Naruhn S, Meissner W, Adhikary T, Kaddatz K, Klein T, Watzer B et al (2010) 15-hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator-activated receptor beta/delta agonist. Mol Pharmacol 77:171–184

    Article  CAS  PubMed  Google Scholar 

  58. Ritzenthaler JD, Roman J, Han S (2009) PPARβ/δ agonist increases the expression of PGE2 receptor subtype EP4 in human lung carcinoma cells. Meth Mol Biol. (Clifton, NJ):309–323

    Google Scholar 

  59. Jiménez R, Sánchez M, Zarzuelo MJ, Romero M, Quintela AM, López-Sepúlveda R et al (2010) Endothelium-dependent vasodilator effects of peroxisome proliferator-activated receptor beta agonists via the phosphatidyl-inositol-3 kinase-Akt pathway. J Pharmacol Exp Ther 332:554–561

    Article  PubMed  CAS  Google Scholar 

  60. Kuroda T, Hirota H, Fujio Y, Sugiyama S, Masaki M, Hiramoto Y et al (2007) Carbacyclin induces carnitine palmitoyltransferase-1 in cardiomyocytes via peroxisome proliferator-activated receptor (PPAR) δ independent of the IP receptor signaling pathway. J Mol Cell Cardiol 43:54–62

    Article  CAS  PubMed  Google Scholar 

  61. Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250

    Article  CAS  PubMed  Google Scholar 

  62. Wang P, Liu J, Li Y, Wu S, Luo J, Yang H et al (2010) Peroxisome Proliferator-activated receptor δ is an essential transcriptional regulator for mitochondrial protection and biogenesis in adult heart. Circ Res 106:911–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM et al (2007) Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117:3930–3939

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu J, Wang P, Luo J, Huang Y, He L, Yang H et al (2011) Peroxisome proliferator-activated receptor β/δ activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition. Hypertension. (Dallas, Tex 1979) 57:223–230

    Article  CAS  PubMed  Google Scholar 

  65. Chen W, Gao R, Xie X, Zheng Z, Li H, Li S et al (2015) A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice. Sci Rep 5:9884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nahlé Z, Hsieh M, Pietka T, Coburn CT, Grimaldi PA, Zhang MQ et al (2008) CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR delta/beta-mediated adaptation to metabolic stress. J Biol Chem 283:14317–14326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Palomer X, Barroso E, Pizarro-Delgado J, Peña L, Botteri G, Zarei M et al (2018) PPARβ/δ: a key therapeutic target in metabolic disorders. Int J Mol Sci 19:913

    Article  PubMed Central  CAS  Google Scholar 

  68. Müller R (2017) PPARβ/δ in human cancer. Biochimie 136:90–99

    Article  PubMed  CAS  Google Scholar 

  69. Peters JM, Gonzalez FJ, Müller R (2015) Establishing the role of PPARβ/δ in carcinogenesis. Trends Endocrinol Metab 26:595–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Werman A, Hollenberg A, Solanes G, Bjørbæk C, Vidal-Puig AJ, Flier JS (1997) Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor γ (PPARγ). Differential activity of PPARγ1 and −2 isoforms and influence of insulin. J Biol Chem 272:20230–20235

    Article  CAS  PubMed  Google Scholar 

  71. Vidal-Puig A, Jimenez-Liñan M, Lowell BB, Hamann A, Hu E, Spiegelman B et al (1996) Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest 97:2553–2561 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Loviscach M, Rehman N, Carter L, Mudaliar S, Mohadeen P, Ciaraldi TP et al (2000) Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 43:304–311

    Article  CAS  PubMed  Google Scholar 

  73. Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NKH, Woodcock SR et al (2010) Covalent peroxisome proliferator-activated receptor γ adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions. J Biol Chem 285:12321–12333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schopfer FJ, Cipollina C, Freeman BA (2011) Formation and signaling actions of electrophilic lipids [Internet]. Chem Rev:5997–6021 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  CAS  PubMed  Google Scholar 

  76. Zhang J, Fu M, Cui T, Xiong C, Xu K, Zhong W et al (2004) Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proc Natl Acad Sci U S A 101:10703–10708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T (2002) PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes Am Diabetes Assoc 51:3586–3590

    CAS  Google Scholar 

  78. Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M et al (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ. Diabetes 52:910–917

    Article  CAS  PubMed  Google Scholar 

  79. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566

    Article  CAS  PubMed  Google Scholar 

  80. Sugii S, Olson P, Sears DD, Saberi M, Atkins AR, Barish GD et al (2009) PPAR activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci U S A 106:22504–22509 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946

    Article  CAS  PubMed  Google Scholar 

  82. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953

    Article  CAS  PubMed  Google Scholar 

  83. Hevener AL, Olefsky JM, Reichart D, Nguyen MTA, Bandyopadyhay G, Leung H-Y et al (2007) Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 117:1658–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L et al (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ferry G, Bruneau V, Beauverger P, Goussard M, Rodriguez M, Lamamy V et al (2001) Binding of prostaglandins to human PPARgamma: tool assessment and new natural ligands. Eur J Pharmacol 417:77–89 

    Article  CAS  PubMed  Google Scholar 

  86. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94:4318–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Palmer CN, Wolf CRR (1998) Cis Parinaric acid is a ligand for the human peroxisome proliferator activated receptor gamma – development of a novel spectrophotometric assay for the discovery of PPAR gamma ligands. FEBS Lett. Wiley-Blackwell 431:476–480

    Article  CAS  PubMed  Google Scholar 

  88. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83:813–819

    Article  CAS  PubMed  Google Scholar 

  89. Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93:229–240

    Article  CAS  PubMed  Google Scholar 

  90. McIntyre TM, Pontsler AV, Silva AR, St. Hilaire A, Xu Y, Hinshaw JC et al (2003) Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPAR agonist. Proc Natl Acad Sci 100:131–136

    Article  CAS  PubMed  Google Scholar 

  91. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem:12953–12956

    Google Scholar 

  92. Henke BR, Blanchard SG, Brackeen MF, Brown KK, Cobb JE, Collins JL et al (1998) N-(2-benzoylphenyl)-L-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J Med Chem 41:5020–5036

    Article  CAS  PubMed  Google Scholar 

  93. Motani A, Wang Z, Weiszmann J, McGee LR, Lee G, Liu Q et al (2009) INT131: a selective modulator of PPARγ. J Mol Biol 386:1301–1311

    Article  CAS  PubMed  Google Scholar 

  94. Chen X, Osborne C (2005) Pharmacological profile of a novel, non-TZD PPARg agonist. Diabetes Obes Metab 7:536–546

    Article  CAS  PubMed  Google Scholar 

  95. Kurosaki E, Nakano R, Shimaya A, Yoshida S, Ida M, Suzuki T et al (2003) Differential effects of YM440 a hypoglycemic agent on binding to a peroxisome proliferator-activated receptor γ and its transactivation. Biochem Pharmacol 65:795–805

    Article  CAS  PubMed  Google Scholar 

  96. Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG et al (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41:6640–6650

    Article  CAS  PubMed  Google Scholar 

  97. Hopkins CR, O’Neil SV, Laufersweiler MC, Wang Y, Pokross M, Mekel M et al (2006) Design and synthesis of novel N-sulfonyl-2-indole carboxamides as potent PPAR-γ binding agents with potential application to the treatment of osteoporosis. Bioorg Med Chem Lett 16:5659–5663

    Article  CAS  PubMed  Google Scholar 

  98. Bernardes A, Batista FAH, de Oliveira Neto M, Figueira ACM, Webb P, Saidemberg D et al (2012) Low-resolution molecular models reveal the oligomeric state of the PPAR and the conformational organization of its domains in solution. PLoS One 7:e31852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL et al (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 98:13919–13924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Artis DR, Lin JJ, Zhang C, Wang W, Mehra U, Perreault M et al (2009) Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc Natl Acad Sci 106:262–267

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mauricio Castellano for his assistance with the preparation of figures. This work was supported by the Agencia Nacional de Investigación e Innovación (ANII) and Programa de Desarrollo de Ciencias Básicas (PEDECIBA, Uruguay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lamas Bervejillo, M., Ferreira, A.M. (2019). Understanding Peroxisome Proliferator-Activated Receptors: From the Structure to the Regulatory Actions on Metabolism. In: Trostchansky, A., Rubbo, H. (eds) Bioactive Lipids in Health and Disease. Advances in Experimental Medicine and Biology, vol 1127. Springer, Cham. https://doi.org/10.1007/978-3-030-11488-6_3

Download citation

Publish with us

Policies and ethics