Skip to main content

Nitroalkylation of α-Synuclein by Nitro-Oleic Acid: Implications for Parkinson’s Disease

  • Chapter
  • First Online:
Bioactive Lipids in Health and Disease

Abstract

α-Synuclein (α-syn) represents the main component of the amyloid aggregates present in Parkinson’s disease and other neurodegenerative disorders, collectively named synucleinopathies. Although α-syn is considered a natively unfolded protein, it shows great structural flexibility which allows the protein to adopt highly rich beta-sheet structures like protofibrils, oligomers and fibrils. In addition, this protein can adopt alpha-helix rich structures when interacts with fatty acids or acidic phospholipid vesicle membranes. When analyzing the toxicity of α-syn, protein oligomers are thought to be the main neurotoxic species by mechanisms that involve modification of intracellular calcium levels, mitochondrial and lysosomal function. Extracellular fibrillar α-syn promotes intracellular protein aggregation and shows many toxic effects as well. Nitro-fatty acids (nitroalkenes) represent novel pleiotropic anti-inflammatory signaling mediators that could interact with α-syn to exert unraveling actions. Herein, we demonstrated that nitro-oleic acid (NO2-OA) nitroalkylate α-syn, forming a covalent adduct at histidine-50. The nitroalkylated-α-syn exhibited strong affinity for phospholipid vesicles, moving the protein to the membrane compartment independent of composition of the membrane phospholipids. Moreover, NO2-OA-modified α-syn showed a reduced capacity to induce α-syn fibrillization compared to the non-nitrated oleic acid. From this data we hypothesize that nitroalkenes, in particular NO2-OA, may inhibit α-syn fibril formation exerting protective actions in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic Lateral Sclerosis

ARE:

antioxidant responsive elements

FABP:

fatty acid binding protein

GAPDH:

glyceraldehyde 3-phosphate dehydro-genase

4-HNE:

4-hydroxynonenal

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MSA:

multiple system atrophy

NO2-OA:

nitro-oleic acid

NSAID:

nonsteroidal anti-inflammatory drugs

OA:

oleic acid

PD:

Parkinson’s disease

PSD:

post source decay

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

SDS:

sodium dodecyl sulfate

SNARE:

soluble NSF attachment receptor

α-syn:

alpha-synuclein

References

  1. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM et al (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152(4):879–884

    Google Scholar 

  2. Si X, Pu J, Zhang B (2017) Structure, distribution, and genetic profile of α-synuclein and their potential clinical application in Parkinson’s disease. J Mov Disord 10(2):69–79

    Article  Google Scholar 

  3. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  Google Scholar 

  4. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501

    Article  CAS  Google Scholar 

  5. Giasson BI, Murray IVJ, Trojanowski JQ, Lee VMY (2001) A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J Biol Chem 276(4):2380–2386

    Article  CAS  Google Scholar 

  6. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715

    Article  CAS  Google Scholar 

  7. Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110

    Article  CAS  Google Scholar 

  8. Gould N, Mor DE, Lightfoot R, Malkus K, Giasson B, Ischiropoulos H (2014) Evidence of native α-synuclein conformers in the human brain. J Biol Chem 289(11):7929–7934

    Article  CAS  Google Scholar 

  9. Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT et al (2012) α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem 287(19):15345–15364

    Article  CAS  Google Scholar 

  10. Theillet F, Binolfi A, Bekei B, Martorana A, Rose HM, Stuiver M (2016) Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530 (7588):45–50

    Article  CAS  Google Scholar 

  11. Bertoncini CW, Jung Y, Fernandez CO, Hoyer W, Griesinger C, Jovin TM et al (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci U S A 102(5):1430–1435

    Article  CAS  Google Scholar 

  12. Wood SJ, Wypych J, Steavenson S, Louis J, Citron M, Biere AL (1999) Alpha-synuclein fibrillogenesis is nucleation-dependent. Biochemistry 274:19509–19512

    Google Scholar 

  13. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48

    Article  Google Scholar 

  14. Hodara R, Norris EH, Giasson BI, Mishizen-Eberz AJ, Lynch DR, Lee VMY et al (2004) Functional consequences of α-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 279(46):47746–47753

    Article  CAS  Google Scholar 

  15. Horvath I, Weise CF, Andersson EK, Chorell E, Sellstedt M, Bengtsson C et al (2012) Mechanisms of protein oligomerization: inhibitor of functional amyloids templates α-synuclein fibrillation. J Am Chem Soc 134(7):3439–3444

    Article  CAS  Google Scholar 

  16. Pieri L, Madiona K, Melki R. (2016) Structural and functional properties of prefibrillar α-synuclein oligomers. Sci Rep 6:24526

    Google Scholar 

  17. Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D et al (2012) Characterization of semisynthetic and naturally N α- acetylated α-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem 287(34):28243–28262

    Article  CAS  Google Scholar 

  18. Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T et al (2002) Alpha-Synuclein, especially the Parkinson’S disease-associated mutants, forms pore-like annular and tubular Protofibrils. J Mol Biol 322(5):1089–1102

    Google Scholar 

  19. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A et al (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232

    Google Scholar 

  20. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Björklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci U S A 110:1–10

    Article  Google Scholar 

  21. Alim MA, Ma Q-L, Takeda K, Aizawa T, Matsubara M, Nakamura V et al (2004) Demonstration of a role for α-synuclein as a functional microtubule-associated protein. J Alzheimer’s Dis 6(4):435–42

    Article  Google Scholar 

  22. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M et al (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157(2):401–410

    Google Scholar 

  23. Karpinar DP, Balija MBG, Kügler S, Opazo F, Rezaei-Ghaleh N, Wender N et al (2009) Pre-fibrillar α-synuclein variants with impaired α-structure increase neurotoxicity in Parkinson’s disease models. EMBO J 28(20):3256–3268

    Article  CAS  Google Scholar 

  24. Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ et al (2017) Dopamine induces soluble alpha-synuclein oligomers and nigrostriatal degeneration. Nat Neuroscie 20(11):1560–1568

    Article  CAS  Google Scholar 

  25. Taschenberger G, Garrido M, Tereshchenko Y, Bähr M, Zweckstetter M, Kügler S (2012) Aggregation of α-synuclein promotes progressive in vivo neurotoxicity in adult rat dopaminergic neurons. Acta Neuropathol 123(5):671–683

    Article  CAS  Google Scholar 

  26. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science (80) 338:949–953

    Article  CAS  Google Scholar 

  27. Braak H, Del Tredici K (2017) Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff. J Park Dis 7(s1):S73–S87

    Google Scholar 

  28. Chavarría C, Rodriguez-Bottero S, Quijano C, Cassina P, Souza JM (2018) Impact of monomeric, oligomeric and fibrillar alpha-synuclein on astrocyte reactivity and toxicity to neurons. Biochem J 475(19):3153-3169

    Article  Google Scholar 

  29. Chavarría C, Souza JM (2013) Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys 533(1–2):25–32

    Article  Google Scholar 

  30. Oueslati A (2016) Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? J Park Dis 6(1):39–51

    CAS  Google Scholar 

  31. Souza JM, Giasson BI, Chen Q, Lee VMY, Ischiropoulos H (2000) Dityrosine cross-linking promotes formation of stable α-synuclein polymers: implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275(24):18344–18349

    Article  CAS  Google Scholar 

  32. Giasson BI, Duda JE, Murray IVJ, Chen Q, Souza JM, Hurtig HI et al (2000) Oxidative damage linked to neurodegeneration by selective alphasynuclein nitration in synucleonopathy lesions. Science 290:985–989

    Article  CAS  Google Scholar 

  33. Uversky VN, Yamin G, Souillac PO, Goers J, Glaser CB, Fink AL (2002) Methionine oxidation inhibits fibrillation of human α-synuclein in vitro. FEBS Lett 517(1–3):239–244

    Article  CAS  Google Scholar 

  34. Li W, West N, Colla E, Pletnikova O, Troncoso JC, Marsh L et al (2005) Aggregation promoting C-terminal truncation of -synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc Natl Acad Sci 102(6):2162–2167

    Article  CAS  Google Scholar 

  35. Vicente Miranda H, Szego ÉM, Oliveira LMA, Breda C, Darendelioglu E, De Oliveira RM et al (2017) Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain 140(5):1399–1419

    Article  Google Scholar 

  36. Przedborski S, Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7(5–6):685–693

    Article  CAS  Google Scholar 

  37. Schapira a H, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1(8649):1269

    Article  Google Scholar 

  38. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100

    Article  CAS  Google Scholar 

  39. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the Zebra Finch. Neuron 15:361–372

    Article  CAS  Google Scholar 

  40. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20(9):3214–3220

    Article  CAS  Google Scholar 

  41. Abeliovich A, Schmitz Y, Farin I, Choi-lundberg D, Ho W, Castillo PE et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252

    Article  CAS  Google Scholar 

  42. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273(16):9443–9449

    Google Scholar 

  43. Perrin RJ, Woods WS, Clayton DF, George JM (2000) Interaction of human α-synuclein and Parkinson’s disease variants with phospholipids: structural analysis using site-directed mutagenesis. J Biol Chem 275(44):34393–34398

    Article  CAS  Google Scholar 

  44. Eliezer D, Kutluay E, Bussell R, Browne G (2001) Conformational properties of α-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073

    Article  CAS  Google Scholar 

  45. Jao CC, Hegde BG, Chen J, Haworth IS, Langen R (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci U S A 105(50):19666–19671

    Article  CAS  Google Scholar 

  46. Zakharov SD, Hulleman JD, Dutseva EA, Antonenko YN, Rochet J-CC, Cramer WA (2007) Helical alpha-synuclein forms highly conductive ion channels. Biochem Int 46(50):14369–14379

    Google Scholar 

  47. Scott D, Roy S (2012) Alpha synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. J Neurosci 32(30):10129–10135

    Google Scholar 

  48. Garcia-Reitböck P, Anichtchik O, Bellucci A, Iovino M, Ballini C, Fineberg E et al (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain 133(7):2032–2044

    Article  Google Scholar 

  49. Lücke C, Gantz DL, Klimtchuk E, Hamilton JA (2006) Interactions between fatty acids and α-synuclein. J Lipid Res 47(8):1714–1724

    Article  Google Scholar 

  50. Sharon R, Goldberg MS, Bar-josef I, Betensky RA, Shen J, Selkoe DJ (2001) Alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci U S A 98(16):9110–9115

    Article  CAS  Google Scholar 

  51. Golovko MY, Faergeman NJ, Cole NB, Castagnet PI, Nussbaum RL, Murphy EJ (2005) Alpha-Synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of alpha-Synuclein palmitate binding. Biochemistry 44(23):8251–8259

    Article  CAS  Google Scholar 

  52. Broersen K, Van Den Brink D, Fraser G, Goedert M, Davletov B (2006) Alpha-Synuclein adopts an alpha-helical conformation in the presence of polyunsaturated fatty acids to hinder micelle formation. Biochemistry 45(51):15610–15616

    Article  CAS  Google Scholar 

  53. Zhu M, Li J, Fink AL (2003) The association of α-synuclein with membranes affects bilayer structure, stability, and fibril formation. J Biol Chem 278(41):40186–40197

    Article  CAS  Google Scholar 

  54. Trostchansky A, Lind S, Hodara R, Oe T, Blair IA, Ischiropoulos H et al (2006) Interaction with phospholipids modulates α-synuclein nitration and lipid–protein adduct formation. Biochem J 393(1):343–349

    Article  CAS  Google Scholar 

  55. Batthyany C, Schopfer FJ, Baker PRS, Durán R, Baker LMS, Huang Y et al (2006) Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J Biol Chem 281(29):20450–20463

    Article  CAS  Google Scholar 

  56. Schopfer FJ, Batthyany C, Baker PRS, Bonacci G, Cole MP, Rudolph V et al (2009) Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives. Free Radic Biol Med 46(9):1250–1259

    Article  CAS  Google Scholar 

  57. Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S et al (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation: formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269(42):26066–26075

    Google Scholar 

  58. Baker PRS, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL, Batthyany C et al (2005) Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J Biol Chem 280(51):42464–42475

    Article  CAS  Google Scholar 

  59. Trostchansky A, Mastrogiovanni M, Miquel E, Rodríguez-Bottero S, Martínez-Palma L, Cassina P et al (2018) Profile of arachidonic acid-derived inflammatory markers and its modulation by nitro-oleic acid in an inherited model of amyotrophic lateral sclerosis. Front Mol Neurosci 11(2):1–11

    Google Scholar 

  60. Freeman BA, Pekarova M, Rubbo H, Trostchansky A (2017) Electrophilic nitro-fatty acids: nitric oxide and nitrite-derived metabolic and inflammatory signaling mediators. In: Nitric oxide biology and pathobiology, 3rd edn. Academic Press, London, pp 213–229

    Chapter  Google Scholar 

Download references

Acknowledgment

We thank Bruce A. Freeman (University of Pittsburgh, Pittsburgh, PA, United States) for provide us with NO2-OA and Carlos Batthyány from the Institut Pasteur de Montevideo for technical assistance. This work was supported by Agencia Nacional de Investigación e Innovación (ANII), Uruguay (ANII-FCE 2011_1_6260 to J.M.S.) and fellowships from ANII, Comisión Sectorial de Investigación Científica and Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) to C.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chavarría, C., Trostchansky, A., Durán, R., Rubbo, H., Souza, J.M. (2019). Nitroalkylation of α-Synuclein by Nitro-Oleic Acid: Implications for Parkinson’s Disease. In: Trostchansky, A., Rubbo, H. (eds) Bioactive Lipids in Health and Disease. Advances in Experimental Medicine and Biology, vol 1127. Springer, Cham. https://doi.org/10.1007/978-3-030-11488-6_11

Download citation

Publish with us

Policies and ethics