New Trends in Preference, Utility, and Choice: From a Mono-approach to a Multi-approach

  • Alfio GiarlottaEmail author
Part of the Multiple Criteria Decision Making book series (MCDM)


We give an overview of some new trends in preference modeling, utility representation, and choice rationalization. Several recent contributions on these topics point in the same direction: the use of multiple tools—may they be binary relations, utility functions, or rationales explaining a choice behavior—in place of a single one, in order to more faithfully model economic phenomena. In this stream of research, the two traditional tenets of economic rationality, completeness and transitivity, are partially (and naturally) given up. Here we describe some recent approaches of this kind, namely: (1) utility representations having multiple orderings as a codomain, (2) multi-utility and modal utility representations, (3) a finer classifications of preference structures and forms of choice rationalizability by means of generalized Ferrers properties, (4) a descriptive characterization of all semiorders in terms of shifted types of lexicographic products, (5) bi-preference structures, and, in particular, necessary and possible preferences, (6) simultaneous and sequential multi-rationalizations of choices, and (7) multiple, iterated, and hierarchical resolutions of choice spaces. As multiple criteria decision analysis provides broader models to better fit reality, so does a multi-approach to preference, utility, and choice. The overall goal of this survey is to suggest the naturalness of this general setting, as well as its advantages over the classical mono-approach.


Preference modeling Utility representation Choice rationalization Completeness Transitivity Lexicographic order Semiorder \(\mathbb {Z}\)-product (m, n)-Ferrers property Bi-preference Necessary and Possible preference Robust ordinal regression Multi-utility representation Modal utility representation Multi-rationalization Choice resolution 



The author is very grateful to José Carlos R. Alcantud, Domenico Cantone, Jean-Paul Doignon, and Stephen Watson for several fruitful suggestions and discussions.


  1. Agaev, R., & Aleskerov, F. (1993). Interval choice: Classic and general cases. Mathematical Social Sciences, 26, 249–272.CrossRefGoogle Scholar
  2. Alcantud, J. C. R., de Andrés, R., & Torrecillas, M. J. M. (2016). Hesitant fuzzy worth: An innovative ranking methodology for hesitant fuzzy subsets. Applied Soft Computing, 38, 232–243.CrossRefGoogle Scholar
  3. Alcantud, J. C. R., Biondo, A. E., & Giarlotta, A. (2018). Fuzzy politics I: The genesis of parties. Fuzzy Sets and Systems, 349, 71–98.CrossRefGoogle Scholar
  4. Alcantud, J. C. R., Bosi, G., & Zuanon, M. (2016). Richter-Peleg multi-utility representations of preorders. Theory and Decision, 80(3), 443–450.CrossRefGoogle Scholar
  5. Alcantud, J. C. R., & Giarlotta, A. (2019). Necessary and possible hesitant fuzzy sets: A novel model for group decision making. Information Fusion, 46, 63–76.CrossRefGoogle Scholar
  6. Aleskerov, F., Bouyssou, D., & Monjardet, B. (2007). Utility maximization, choice and preference. Berlin: Springer.Google Scholar
  7. Angilella, S., Bottero, M., Corrente, S., Ferretti, V., Greco, S., & Lami, I. (2016). Non additive robust ordinal regression for urban and territorial planning: An application for siting an urban waste landfill. Annals of Operations Research, 245(1), 427–456.CrossRefGoogle Scholar
  8. Angilella, S., Catalfo, P., Corrente, S., Giarlotta, A., Greco, S., & Rizzo, M. (2018). Robust sustainable development assessment with composite indices aggregating interacting dimensions: The hierarchical-SMAA-Choquet integral approach. Knowledge-Based Systems, 158, 136–153.CrossRefGoogle Scholar
  9. Angilella, S., Corrente, S., Greco, S., & Słowiński, R. (2014). MUSA-INT: Multicriteria customer satisfaction analysis with interacting criteria. Omega, 42(1), 189–200.CrossRefGoogle Scholar
  10. Angilella, S., Corrente, S., Greco, S., & Słowiński, R. (2016). Robust ordinal regression and stochastic multiobjective acceptability analysis in multiple criteria hierarchy process for the Choquet integral preference model. Omega, 63, 154–169.CrossRefGoogle Scholar
  11. Angilella, S., & Giarlotta, A. (2009). Implementations of PACMAN. European Journal of Operational Research, 194, 474–495.CrossRefGoogle Scholar
  12. Angilella, S., Giarlotta, A., & Lamantia, F. (2010a). A linear implementation of PACMAN. European Journal of Operational Research, 205, 401–411.Google Scholar
  13. Angilella, S., Greco, S., & Matarazzo, B. (2010b). Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral. European Journal of Operational Research, 201(1), 277–288.Google Scholar
  14. Apesteguía, J., & Ballester, M. A. (2009). A theory of reference-dependent behavior. Economic Theory, 40, 427–455.CrossRefGoogle Scholar
  15. Apesteguía, J., & Ballester, M. A. (2013). Choice by sequential procedures. Games and Economic Behavior, 77, 90–99.CrossRefGoogle Scholar
  16. Armstrong, W. E. (1939). The determinateness of the utility function. The Economic Journal, 49(195), 453–467.CrossRefGoogle Scholar
  17. Arrow, K. J. (1959). Rational choice functions and orderings. Economica, 26, 121–127.CrossRefGoogle Scholar
  18. Arrow, K. J. (1963). Social choice and individual values. New York: Wiley.Google Scholar
  19. Anscombe, F. J., & Aumann, R. J. (1963). A definition of subjective probability. The Annals of Mathematical Statistics, 34(1), 199–295.CrossRefGoogle Scholar
  20. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96.CrossRefGoogle Scholar
  21. Atanassov, K. T. (1999). Intuitionistic fuzzy sets. Theory and applications. Studies in Fuzziness and Soft Computing, Vol. 35. Heidelberg: Physica-Verlag.Google Scholar
  22. Au, P. H., & Kawai, K. (2011). Sequentially rationalizable choice with transitive rationales. Games and Economic Behavior, 73(2), 608–614.CrossRefGoogle Scholar
  23. Aumann, R. J. (1962). Utility theory without the completeness axiom. Econometrica, 30, 445–462.CrossRefGoogle Scholar
  24. Bade, S. (2005). Nash equilibrium in games with incomplete preferences. Economic Theory, 26, 309–332.CrossRefGoogle Scholar
  25. Bandyopadhyay, T., & Sengupta, K. (1991). Revealed preference axioms for rational choice. The Economic Journal, 101(405), 202–213.CrossRefGoogle Scholar
  26. Bandyopadhyay, T., & Sengupta, K. (1993). Characterization of generalized weak orders and revealed preference. Economic Theory, 3, 571–576.CrossRefGoogle Scholar
  27. Beardon, A. F., Candeal, J. C., Herden, G., Induráin, E., & Mehta, G. B. (2002a). The non-existence of a utility function and the structure of non-representable preference relations. Journal of Mathematical Economics, 37, 17–38.Google Scholar
  28. Beardon, A. F., Candeal, J. C., Herden, G., Induráin, E., & Mehta, G. B. (2002b). Lexicographic decomposition of chains and the concept of a planar chain. Journal of Mathematical Economics, 37(2), 95–104.Google Scholar
  29. Beja, A., & Gilboa, I. (1992). Numerical representations of imperfectly ordered preferences. A unified geometric exposition. Journal of Mathematical Psychology, 36, 426–449.CrossRefGoogle Scholar
  30. Bell, D. E. (1982). Regret in decision making under uncertainty. Operation Research, 30(5), 961–981.CrossRefGoogle Scholar
  31. Bewley, T. F. (1972). Existence of equilibria in economies with infinitely many commodities. Journal of Economic Theory, 4, 514–540.CrossRefGoogle Scholar
  32. Bewley, T. F. (1986). Knightian decision theory. Part I: Cowles Foundation Discussion Paper No. 807. (Reprinted in 2002, Decisions in Economics and Finance, 25(2), 79–110).Google Scholar
  33. Birkhoff, G. (1948). Lattice theory. American Mathematical Society Colloquium Publication, Vol. 25. Providence, RI.Google Scholar
  34. Blackorby, C., & Donaldson, D. (1977). Utility vs equity: Some plausible quasi-orderings. Journal of Public Economics, 7, 365–381.CrossRefGoogle Scholar
  35. Bleichrodt, H., & Wakker, P. P. (2015). Regret theory: A bold alternative to the alternatives. The Economic Journal, 125, 493–532.CrossRefGoogle Scholar
  36. Bosi, G., Candeal, J. C., Induráin, E., Olóriz, E., & Zudaire, M. (2001). Numerical representations of interval orders. Order, 18, 171–190.CrossRefGoogle Scholar
  37. Bosi, G., & Herden, G. (2012). Continuous multi-utility representations of preorders. Journal of Mathematical Economics, 48, 212–218.CrossRefGoogle Scholar
  38. Bossert, W. (1999). Intersection quasi-orderings: An alternative proof. Order, 16(3), 221–225.CrossRefGoogle Scholar
  39. Bouyssou, D., & Pirlot, M. (2004). Preferences for multi-attributed alternatives: Traces, dominance, and numerical representations. Journal of Mathematical Psychology, 48(3), 167–185.CrossRefGoogle Scholar
  40. Bridges, D., & Mehta, G. B. (1995). Representations of preference orderings. Lecture Notes in Economics and Mathematical Systems, Vol. 422. Berlin: Springer.Google Scholar
  41. Campión, M. J., Candeal, J. C., & Induráin, E. (2006). The existence of utility functions for weakly continuous preferences on a Banach space. Mathematical Social Sciences, 51, 227–237.CrossRefGoogle Scholar
  42. Campión, M. J., Candeal, J. C., Induráin, E., & Zudaire, M. (2008). Continuous representability of semiorders. Journal of Mathematical Psychology, 52, 48–54.CrossRefGoogle Scholar
  43. Candeal, J. C., & Induráin, E. (1999). Lexicographic behavior of chains. Archiv der Mathematik, 72, 145–152.CrossRefGoogle Scholar
  44. Candeal, J. C., & Induráin, E. (2010). Semiorders and thresholds of utility discrimination: Solving the Scott-Suppes representability problem. Journal of Mathematical Psychology, 54, 485–490.CrossRefGoogle Scholar
  45. Candeal, J. C., Estevan, A., Gutiérrez García, J., & Induráin, E. (2012). Semiorders with separability properties. Journal of Mathematical Psychology, 56, 444–451.CrossRefGoogle Scholar
  46. Cantone, D., Giarlotta, A., Greco, S., & Watson, S. (2016). \((m, n)\)-rationalizability. Journal of Mathematical Psychology, 73, 12–27.CrossRefGoogle Scholar
  47. Cantone, D., Giarlotta, A., & Watson, S. (2017). The satisfiability for Boolean set theory with a choice correspondence. In Proceedings of the Eight International Symposium on Games, Automata, Logics and Formal Verification (GandALF 2017), Rome, Italy, 20–22 September.Google Scholar
  48. Cantone, D., Giarlotta, A., & Watson, S. (2018a). Decomposing choice behavior: One-point resolutions. Mimeo: University of Catania.Google Scholar
  49. Cantone, D., Giarlotta, A., & Watson, S. (2018b). Congruence relations on a choice space. Social Choice and Welfare (forthcoming).
  50. Cantone, D., Giarlotta, A., & Watson, S. (2018c). Multi-rationalizability. Mimeo: University of Catania.Google Scholar
  51. Cantor, G. (1895). Beiträge zur begründung der transfinite mengenlehre. Mathematische Annalen, 46, 481–512.CrossRefGoogle Scholar
  52. Caserta, A., Giarlotta, A., & Watson, S. (2006). On resolutions of linearly ordered spaces. Applied General Topology, 7(2), 211–231.CrossRefGoogle Scholar
  53. Caserta, A., Giarlotta, A., & Watson, S. (2008). Debreu-like properties of utility representations. Journal of Mathematical Economics, 44, 1161–1179.CrossRefGoogle Scholar
  54. Cerreia-Vioglio, S., Giarlotta, A., Greco, S., Maccheroni, F., & Marinacci, M. (2018). Rational preference and rationalizable choice. Economic Theory (forthcoming).Google Scholar
  55. Chambers, C. P., & Echenique, F. (2016). Revealed preference theory. Econometric Society Monographs. Cambridge University Press.Google Scholar
  56. Chambers, C. P., & Miller, A. D. (2018). Benchmarking. Theoretical Economics, 11, 485–504.CrossRefGoogle Scholar
  57. Cherepanov, V., Feddersen, T., & Sandroni, A. (2013). Razionalization. Theoretical Economics, 8, 775–800.CrossRefGoogle Scholar
  58. Chernoff, H. (1954). Rational selection of decision functions. Econometrica, 22, 422–443.CrossRefGoogle Scholar
  59. Chipman, J. S. (1960). The foundations of utility. Econometrica, 28, 193–224.CrossRefGoogle Scholar
  60. Chipman, J. S. (1971). On the lexicographic representations of preference orderings. In J. S. Chipman, L. Hurwicz, M. Richter, & H. F. Sonnenschein (Eds.), Preference, utility and demand (pp. 276–288). New York: Harcourt Brace and Jovanovich.Google Scholar
  61. Corrente, S., Greco, S., Kadziński, M., & Słowiński, R. (2013). Robust ordinal regression in preference learning and ranking. Machine Learning, 93(2–3), 381–422.CrossRefGoogle Scholar
  62. Corrente, S., Greco, S., Matarazzo, B., & Słowiński, R. (2016). Robust ordinal regression for decision under risk and uncertainty. Journal of Business Economics, 86(1), 55–83.CrossRefGoogle Scholar
  63. Corrente, S., Greco, S., & Słowiński, R. (2012). Multiple criteria hierarchy process in robust ordinal regression. Decision Support Systems, 53(3), 660–674.CrossRefGoogle Scholar
  64. Corrente, S., Greco, S., & Słowiński, R. (2013). Multiple criteria hierarchy process with ELECTRE and PROMETHEE. Omega, 41(5), 820–846.CrossRefGoogle Scholar
  65. Corrente, S., Greco, S., & Słowiński, R. (2016). Multiple criteria hierarchy process for ELECTRE Tri methods. European Journal of Operational Research, 252(1), 191–203.CrossRefGoogle Scholar
  66. Danan, E. (2010). Randomization vs. selection: How to choose in the absence of preference? Management Science, 56, 503–518.CrossRefGoogle Scholar
  67. Davidson, D., McKinsey, J. C., & Suppes, P. (1955). Outlines of a formal theory of value, I. Philosophy of Science, 22(2), 140–160.CrossRefGoogle Scholar
  68. Davis-Stober, C., Doignon, J.-P., Fiorini, S., Glineur, F., & Regenwetter, M. (2018). Extended formulations for order polytopes through network flows. Journal of Mathematical Psychology (forthcoming).Google Scholar
  69. Debreu, G. (1954). Representation of a preference ordering by a numerical function. In R. M. Thrall, C. H. Coombs, & R. L. Davies (Eds.), Decision processes (pp. 159–166). New York: Wiley.Google Scholar
  70. Debreu, G. (1964). Continuity properties of Paretian utility. International Economic Review, 5, 285–293.CrossRefGoogle Scholar
  71. Diamond, P. A. (1965). The evaluation of infinite utility streams. Econometrica, 33, 70–77.CrossRefGoogle Scholar
  72. Doignon, J.-P., & Falmagne, J.-C. (1997). Well-graded families of relations. Discrete Mathematics, 173, 35–44.CrossRefGoogle Scholar
  73. Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Berlin: Springer.CrossRefGoogle Scholar
  74. Del Vasto-Terrientes, L., Valls, A., Słowiński, R., & Zielniewicz, P. (2015). ELECTRE-III-H: An outranking-based decision aiding method for hierarchically structured criteria. Expert Systems with Applications, 42(11), 4910–4926.CrossRefGoogle Scholar
  75. Del Vasto-Terrientes, L., Valls, A., Zielniewicz, P., & Borras, J. (2016). A hierarchical multi-criteria sorting approach for recommender systems. Journal of Intelligent Information Systems, 46(2), 313–346.CrossRefGoogle Scholar
  76. Donaldson, D., & Weymark, J. A. (1998). A quasi-ordering is the intersection of orderings. Journal of Economic Theory, 78, 382–387.CrossRefGoogle Scholar
  77. Dubra, J., Maccheroni, F., & Ok, E. A. (2004). Expected utility theory without the completeness axiom. Journal of Economic Theory, 115, 118–133.CrossRefGoogle Scholar
  78. Dushnik, B., & Miller, E. W. (1941). Partially ordered sets. American Journal of Mathematics, 63, 600–610.CrossRefGoogle Scholar
  79. Eilenberg, S. (1941). Ordered topological spaces. American Journal of Mathematics, 63, 39–45.CrossRefGoogle Scholar
  80. Eliaz, K., & Ok, E. A. (2006). Indifference or indecisiveness? Choice-theoretic foundations of incomplete preferences. Games and Economic Behavior, 56, 61–86.CrossRefGoogle Scholar
  81. Estévez, M., & Hervés, C. (1995). On the existence of continuous preference orderings without utility representations. Journal of Mathematical Economics, 24, 305–309.CrossRefGoogle Scholar
  82. Evren, O. (2014). Scalarization methods and expected multi-utility representations. Journal of Economic Theory, 151, 30–63.CrossRefGoogle Scholar
  83. Evren, O., & Ok, E. A. (2011). On the multi-utility representation of preference relations. Journal of Mathematical Economics, 47, 554–563.CrossRefGoogle Scholar
  84. Falmagne, J.-C. (1996). A stochastic theory for the emergence and the evolution of preference relations. Mathematical Social Sciences, 31, 63–84.CrossRefGoogle Scholar
  85. Falmagne, J.-C. (1997). Stochastic token theory. Journal of Mathematical Psychology, 41(2), 129–143.CrossRefGoogle Scholar
  86. Falmagne, J.-C., & Doignon, J.-P. (1997). Stochastic evolution of rationality. Theory and Decisions, 43(2), 107–138.CrossRefGoogle Scholar
  87. Falmagne, J.-C., & Doignon, J.-P. (2011). Learning spaces. Berlin: Springer.CrossRefGoogle Scholar
  88. Fechner, G. T. (1860). Elemente der Psychophysik. Leipzig: Breitkopf & Härtel, tome I.Google Scholar
  89. Fedorcuk, V. V. (1968). Bicompacta with noncoinciding dimensionalities. Soviet Mathematics Doklady, 9(5), 1148–1150.Google Scholar
  90. Fishburn, P. C. (1968). Semiorders and risky choices. Journal of Mathematical Psychology, 5, 358–361.CrossRefGoogle Scholar
  91. Fishburn, P. C. (1970). Intransitive indifference with unequal indifference intervals. Journal of Mathematical Psychology, 7, 144–149.CrossRefGoogle Scholar
  92. Fishburn, P. C. (1973a). The theory of social choice. Princeton, NJ: Princeton University Press.Google Scholar
  93. Fishburn, P. C. (1973b). Interval representations for interval orders and semiorders. Journal of Mathematical Psychology, 10, 91–105.Google Scholar
  94. Fishburn, P. C. (1974). Lexicographic orders, utilities and decision rules. Management Science, 20, 1442–1471.CrossRefGoogle Scholar
  95. Fishburn, P. C. (1975). Semiorders and choice functions. Econometrica, 43, 975–977.CrossRefGoogle Scholar
  96. Fishburn, P. C. (1982). Nontransitive measurable utility. Journal of Mathematical Psychology, 26(1), 31–67.CrossRefGoogle Scholar
  97. Fishburn, P. C. (1985). Interval orders and interval graphs. New York: Wiley.CrossRefGoogle Scholar
  98. Fishburn, P. C. (1997). Generalisations of semiorders: A review note. Journal of Mathematical Psychology, 41(4), 357–366.CrossRefGoogle Scholar
  99. Fishburn, P. C., & Monjardet, B. (1992). Norbert Wiener on the theory of measurement (1914, 1915, 1921). Journal of Mathematical Psychology, 36, 165–184.CrossRefGoogle Scholar
  100. Fleischer, I. (1961). Numerical representation of utility. Journal of the Society for Industrial and Applied Mathematics, 9(1), 147–150.Google Scholar
  101. Fleischer, I. (1961). Embedding linearly ordered sets in real lexicographic products. Fundamenta Mathematicae, 49, 147–150.CrossRefGoogle Scholar
  102. Fujimoto, K., Murofushi, T., & Sugeno, M. (1998). Canonical hierarchical decomposition of Choquet integral over finite set with respect to null additive fuzzy measure. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(4), 345–363.CrossRefGoogle Scholar
  103. García-Sanz, M., & Alcantud, J. C. R. (2015). Sequential rationalization of multivalued choice. Mathematical Social Sciences, 74, 29–33.CrossRefGoogle Scholar
  104. Gensemer, S. H. (1987). Continuous semiorder representations. Journal of Mathematical Economics, 16, 275–286.CrossRefGoogle Scholar
  105. Georgescu-Roegen, N. (1936). The pure theory of consumer’s behaviour. The Quarterly Journal of Economics 545–593.Google Scholar
  106. Gerasímou, G. (2013). On continuity of incomplete preferences. Social Choice and Welfare, 41, 157–167.CrossRefGoogle Scholar
  107. Ghirardato, P., Maccheroni, F., & Marinacci, M. (2004). Differentiating ambiguity and ambiguity attitude. Journal of Economic Theory, 118, 133–173.CrossRefGoogle Scholar
  108. Ghirardato, P., Maccheroni, F., Marinacci, M., & Siniscalchi, M. (2003). A subjective spin on roulette wheels. Econometrica, 71, 1897–1908.CrossRefGoogle Scholar
  109. Giarlotta, A. (1998). Passive and active compensability multicriteria analysis (PACMAN). Journal of Multicriteria Decision Analysis, 7(4), 204–216.CrossRefGoogle Scholar
  110. Giarlotta, A. (2001). Multicriteria compensability analysis. European Journal of Operational Research, 133, 190–209.CrossRefGoogle Scholar
  111. Giarlotta, A., (2004a). Lexicographic products of linear orderings. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana.Google Scholar
  112. Giarlotta, A. (2004b). Representable lexicographic products. Order, 21, 29–41.Google Scholar
  113. Giarlotta, A. (2005). The representability number of a chain. Topology and its Applications, 150, 157–177.CrossRefGoogle Scholar
  114. Giarlotta, A. (2014). A genesis of interval orders and semiorders: Transitive NaP-preferences. Order, 31, 239–258.CrossRefGoogle Scholar
  115. Giarlotta, A. (2015). Normalized and strict NaP-preferences. Journal of Mathematical Psychology, 66, 34–40.CrossRefGoogle Scholar
  116. Giarlotta, A., & Greco, S. (2013). Necessary and possible preference structures. Journal of Mathematical Economics, 42(1), 163–172.CrossRefGoogle Scholar
  117. Giarlotta, A., & Watson, S. (2009). Pointwise Debreu lexicographic powers. Order, 26(4), 377–409.CrossRefGoogle Scholar
  118. Giarlotta, A., & Watson, S. (2013). A hierarchy of chains embeddable into the lexicographic power \({\mathbb{R}}^\omega _{\rm lex}\). Order, 30, 463–485.CrossRefGoogle Scholar
  119. Giarlotta, A., & Watson, S. (2014a). The pseudo-transitivity of preference relations: Strict and weak \((m, n)\)-Ferrers properties. Journal of Mathematical Psychology, 58, 45–54.Google Scholar
  120. Giarlotta, A., & Watson, S. (2014b). Lexicographic preferences representable by real-branching trees with countable height: A dichotomy result. Indagationes Mathematicae, 25, 78–92.Google Scholar
  121. Giarlotta, A., & Watson, S. (2016). Universal semiorders. Journal of Mathematical Psychology, 73, 80–93.CrossRefGoogle Scholar
  122. Giarlotta, A., & Watson, S. (2017a). Well-graded families of NaP-preferences. Journal of Mathematical Psychology, 77, 21–28.Google Scholar
  123. Giarlotta, A., & Watson, S. (2017b). Necessary and possible indifferences. Journal of Mathematical Psychology, 81, 98–109.Google Scholar
  124. Giarlotta, A., & Watson, S. (2018a). Strict \((m, 1)\)-Ferrers properties. Journal of Mathematical Psychology, 82, 84–96.Google Scholar
  125. Giarlotta, A., & Watson, S. (2018b). A general theory of bi-preferences. Mimeo: University of Catania.Google Scholar
  126. Giarlotta, A., & Watson, S. (2018c). A descriptive classification of universal semiorders. Mimeo: University of Catania.Google Scholar
  127. Giarlotta, A., & Watson, S. (2018d). Benchmarking: revisited, extended, and generalized. Mimeo: University of Catania.Google Scholar
  128. Giarlotta, A., & Watson, S. (2019). On the interplay between the two rationality tenets: extending Schmeidler’s theorem to bi-preferences. Mimeo: University of Catania.Google Scholar
  129. Gilboa, I., Maccheroni, F., Marinacci, M., & Schmeidler, D. (2010). Objective and subjective rationality in a multiple prior model. Econometrica, 78(2), 755–770.CrossRefGoogle Scholar
  130. Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with a non-unique prior. Journal of Mathematical Economics, 18, 141–153.CrossRefGoogle Scholar
  131. Greco, S. (1997). A new PCCA method: IDRA. European Journal of Operational Research, 98, 587–601.CrossRefGoogle Scholar
  132. Greco, S. (Ed.). (2005). Multiple criteria decision analysis: State of the art surveys., International Series in Operations Research & Management Science Berlin: Springer.Google Scholar
  133. Greco, S., Mousseau, V., & Słowiński, R. (2008). Ordinal regression revisited: Multiple criteria ranking with a set of additive value functions. European Journal of Operational Research, 191, 415–435.CrossRefGoogle Scholar
  134. Greco, S., Ehrgott, M., & Figueira, J. (Eds.). (2010a). Trends in multiple criteria decision analysis., International Series in Operations Research & Management Science Berlin: Springer.Google Scholar
  135. Greco, S., Mousseau, V., & Słowiński, R. (2010b). Multiple criteria sorting with a set of additive value functions. European Journal of Operational Research, 207(3), 1455–1470.Google Scholar
  136. Gustafsson, J. E. (2010). A money-pump for acyclic intransitive preferences. Dialectica, 64(2), 251–257.CrossRefGoogle Scholar
  137. Halphen, E. (1955). La notion de vraisemblance. Inst. de Statistique de l’Université de Paris.Google Scholar
  138. Hansson, B. (1968). Choice structures and preference relations. Synthese, 18, 443–458.CrossRefGoogle Scholar
  139. Hansson, S. (1993). Money-pumps, self-torturers and the demons of real life. Australasian Journal of Philosophy, 71(4), 476–485.Google Scholar
  140. Herden, G. (1989). On the existence of utility functions. Mathematical Social Sciences, 17, 297–313.CrossRefGoogle Scholar
  141. Herden, G., & Mehta, G. B. (2004). The Debreu Gap Lemma and some generalizations. Journal of Mathematical Economics, 40, 747–769.CrossRefGoogle Scholar
  142. Herden, G., & Pallack, A. (2002). On the continuous analogue of the Szpilrajn theorem I. Mathematical Social Sciences, 43, 115–134.CrossRefGoogle Scholar
  143. Herzberger, H. (1973). Ordinal preference and rational choice. Econometrica, 41(2), 187–237.CrossRefGoogle Scholar
  144. Hicks, J. (1956). A Revision of Demand Theory. Oxford: Clarendon Press.Google Scholar
  145. Houthakker, H. S. (1950). Revealed preference and the utility function. Economica, 17, 159–174.CrossRefGoogle Scholar
  146. Jaffray, J. (1975a). Existence of a continuous utility function: An elementary proof. Econometrica, 43, 981–983.Google Scholar
  147. Jaffray, J. (1975b). Semicontinuous extension of a partial order. Journal of Mathematical Economics, 2, 395–406.Google Scholar
  148. Jamison, D. T., & Lau, L. J. (1973). Semiorders and the theory of choice. Econometrica, 41, 901–912.CrossRefGoogle Scholar
  149. Jamison, D. T., & Lau, L. J. (1975). Semiorders and the theory of choice: A correction. Econometrica, 43, 975–977.CrossRefGoogle Scholar
  150. Jacquet-Lagreze, E., & Siskos, J. (1982). Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research, 10(2), 151–164.CrossRefGoogle Scholar
  151. Kalai, G., Rubinstein, A., & Spiegler, R. (2002). Rationalizing choice functions by multiple rationales. Econometrica, 70(6), 2481–2488.CrossRefGoogle Scholar
  152. Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgement under uncertainty: Heuristics and biases. New York: Cambridge University Press.CrossRefGoogle Scholar
  153. Kaminski, B. (2007). On quasi-orderings and multi-objective functions. European Journal of Operational Research, 177, 1591–1598.CrossRefGoogle Scholar
  154. Knoblauch, V. (2000). Lexicographic orders and preference representation. Journal of Mathematical Economics, 34, 255–267.CrossRefGoogle Scholar
  155. Kopylov, I. (2009). Choice deferral and ambiguity aversion. Theoretical Economics, 4, 199–225.Google Scholar
  156. Krantz, D. H. (1967). Extensive measurement in semiorders. Philosophy of Science, 34, 348–362.CrossRefGoogle Scholar
  157. Kreps, D. M. (2013). Microeconomics Foundations I: Choice and Competitive Markets. Princeton University Press.Google Scholar
  158. Kuhlmann, S. (1995). Isomorphisms of lexicographic powers of the reals. Proceedings of the American Mathematical Society, 123(9), 2657–2662.CrossRefGoogle Scholar
  159. Kunen, K. (1980). Set theory. An introduction to independence proofs. North-Holland, Amsterdam: Elsevier.Google Scholar
  160. Lehrer, E., & Teper, R. (2011). Justifiable preferences. Journal of Economic Theory, 146, 762–774.CrossRefGoogle Scholar
  161. Lehrer, K., & Wagner, C. (1985). Intransitive indifference: The semi-order problem. Synthese, 65, 249–256.CrossRefGoogle Scholar
  162. Levin, V. (1983). Measurable utility theorems for closed and lexicographic preference relations. Soviet Mathematics Doklady, 27, 639–643.Google Scholar
  163. Levy, G. (2004). A model of political parties. Journal of Economic Theory, 115, 250–277.CrossRefGoogle Scholar
  164. Lleras, J. S., Masatlioglu, Y., Nakajima, D., & Ozbay, E. Y. (2017). When more is less: Limited consideration. Journal of Economic Theory, 170, 70–85.Google Scholar
  165. Loomes, G., & Sugden, R. (1982). A rationale for preference reversal. Newcastle Discussion Papers in Economics, 63.Google Scholar
  166. Luce, R. D. (1956). Semiorders and a theory of utility discrimination. Econometrica, 24, 178–191.CrossRefGoogle Scholar
  167. Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. Wiley.Google Scholar
  168. Luce, R. D., & Raiffa, H. (1957). Games and decisions: Introduction and critical survey. New York: Wiley.Google Scholar
  169. Maccheroni, F. (2004). Yaari’s dual theory without the completeness axiom. Economic Theory, 23, 701–714.CrossRefGoogle Scholar
  170. Majumdar, M., & Sen, A. (1976). A note on representing partial orderings. Review of Economic Studies, 43, 543–545.CrossRefGoogle Scholar
  171. Manders, K. L. (1981). On JND representations of semiorders. Journal of Mathematical Psychology, 24, 224–248.CrossRefGoogle Scholar
  172. Mandler, M. (2006). Cardinality versus ordinality: A suggested compromise. American Economic Review, 96, 1114–1136.CrossRefGoogle Scholar
  173. Mandler, M., Manzini, P., & Mariotti, M. (2012). A million answers to twenty questions: Choosing by checklist. Journal of Economic Theory, 147, 71–92.CrossRefGoogle Scholar
  174. Manzini, P., & Mariotti, M. (2007). Sequentially rationalizable choice. American Economic Review, 97, 1824–1839.CrossRefGoogle Scholar
  175. Manzini, P., & Mariotti, M. (2012). Choice by lexicographic semiorders. Theoretical Economics, 7, 1–23.CrossRefGoogle Scholar
  176. Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. New York: Oxford University Press.Google Scholar
  177. Masatlioglu, Y., & Nakajima, D. (2013). Choice by iterative search. Theoretical Economics, 8, 701–728.CrossRefGoogle Scholar
  178. Masatlioglu, Y., Nakajima, D., & Ozbay, E. Y. (2012). Revealed attention. American Economic Review, 102(5), 2183–2205.CrossRefGoogle Scholar
  179. Masatlioglu, Y., & Ok, E. A. (2005). Rational choice with status quo bias. Journal of Economic Theory, 121, 1–29.CrossRefGoogle Scholar
  180. Masin, M., & Bukchin, Y. (2008). Diversity maximization approach for multiobjective optimization. Operations Research, 56, 411–424.CrossRefGoogle Scholar
  181. Matarazzo, B. (1986). Multicriterion analysis of preferences by means of pairwise action and criterion comparisons (MAPPAC). Applied Mathematics and Computation, 18(2), 119–141.CrossRefGoogle Scholar
  182. Matarazzo, B. (1988a). Preference ranking of global frequencies in multicriterion analysis (PRAGMA). European Journal of Operational Research, 36(1), 36–49.Google Scholar
  183. Matarazzo, B. (1988b). A more effective implementation of the MAPPAC and PRAGMA methods. Foundations of Control Engineering, 13, 155–173.Google Scholar
  184. Matarazzo, B. (1990a). A pairwise criterion comparison approach: The MAPPAC and PRAGMA methods. In: C. A. Bana e Costa (ed.), Readings in multiple criteria decision aid (pp. 253–273). Berlin: Springer-Verlag.Google Scholar
  185. Matarazzo, B. (1990b). PCCA and \(k\)-dominance in MCDM. Belgian Journal of Operational Research, Statistics and Computer Science, 30(3), 56–69.Google Scholar
  186. Matarazzo, B. (1991a). MAPPAC as a compromise between outranking methods and MAUT. European Journal of Operational Research, 54, 48–65.Google Scholar
  187. Matarazzo, B. (1991b). PCCA and compensation. In P. Korhonen, A. Lewandowski, & J. Wallenius (Eds.), Multiple criteria decision support (pp. 99–108). Berlin: Springer-Verlag.Google Scholar
  188. McClennen, E. F. (1990). Rationality and dynamic choice: Foundational explorations. Cambridge University Press.Google Scholar
  189. Mehta, G. B. (1998). Preference and utility. In S. Barberà, P. Hammond, & C. Seidl (Eds.), Handbook of utility theory (pp. 1–47). Dordrecht: Kluwer Academic Publisher.Google Scholar
  190. Milgram, A. N. (1939). Partially ordered sets, separating systems and inductiveness. In K. Menger (Ed.), Reports of a mathematical colloquium (2nd Series, Vol. 1). University of Notre Dame.Google Scholar
  191. Minguzzi, E. (2013). Normally preordered spaces and utilities. Order, 30, 137–150.CrossRefGoogle Scholar
  192. Monjardet, B. (1978). Axiomatiques et proprietés des quasi-ordres. Mathématiques et Sciences Humaines, 63, 51–62.Google Scholar
  193. Monteiro, P. K. (1987). Some results on the existence of utility functions on path connected spaces. Journal of Mathematical Economics, 16, 147–156.CrossRefGoogle Scholar
  194. Moulin, H. (1985). Choice functions over a finite set: A summary. Social Choice and Welfare, 2, 147–160.CrossRefGoogle Scholar
  195. Munkres, J. R. (2000). Topology (2nd Ed.). Prentice-Hall.Google Scholar
  196. Nakamura, Y. (2002). Real interval representations. Journal of Mathematical Psychology, 46, 140–177.CrossRefGoogle Scholar
  197. Narens, L. (1985). Abstract measurement theory. MIT press.Google Scholar
  198. Nau, R. (2006). The shape of incomplete preferences. Annals of Statistics, 34, 2430–2448.CrossRefGoogle Scholar
  199. Neuefeind, W. (1972). On continuous utility. Journal of Economic Theory, 5, 174–176.CrossRefGoogle Scholar
  200. von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.Google Scholar
  201. Nishimura, I. (2018). The transitive core: Inference of welfare from nontransitive preference relations. Theoretical Economics, 13, 579–606.CrossRefGoogle Scholar
  202. Ok, E. A. (2002). Utility representation of an incomplete preference relation. Journal of Economic Theory, 104, 429–449.CrossRefGoogle Scholar
  203. Ok, E. A., Ortoleva, P., & Riella, G. (2012). Incomplete preferences under uncertainty: Indecisiveness in beliefs versus tastes. Econometrica, 80(4), 1791–1808.CrossRefGoogle Scholar
  204. Öztürk, M. (2008). Ordered sets with interval representations and \((m, n)\)-Ferrers relation. Annals Operations Research, 163, 177–196.CrossRefGoogle Scholar
  205. Peleg, B. (1970). Utility functions for partially ordered topological spaces. Econometrica, 38, 93–96.CrossRefGoogle Scholar
  206. Piper, A. M. (2014). The money pump is necessarily diachronic. In Adrian Piper Research Archive Foundation Berlin/Philosophy.Google Scholar
  207. Pirlot, M., & Vincke, P. (1997). Semiorders: properties, representations, applications. Dordrecht: Kluver.CrossRefGoogle Scholar
  208. Plott, C. R. (1973). Path independence, rationality, and social choice. Econometrica, 41(6), 1075–1091.CrossRefGoogle Scholar
  209. Poincaré, H. (1908). La valeur de la science. E. Flammarion.Google Scholar
  210. Rabinovitch, I. (1977). The Scott-Suppes theorem on semiorders. Journal of Mathematical Psychology, 15, 209–212.CrossRefGoogle Scholar
  211. Rabinovitch, I. (1978). The dimension of semiorders. Journal of Combinatorial Theory (A), 25, 50–61.CrossRefGoogle Scholar
  212. Rabinowicz, W. (2008). Value relations. Theoria, 74(1), 18–49.CrossRefGoogle Scholar
  213. Regenwetter, M., Dana, J., & Davis-Stober, C. P. (2010). Testing transitivity of preferences on two-alternative forced choice data. Frontiers in Quantitative Psychology and Measurement, 1.Google Scholar
  214. Regenwetter, M., Dana, J., & Davis-Stober, C. P. (2011). Transitivity of preferences. Psychological Review, 118, 42–56.CrossRefGoogle Scholar
  215. Restle, F. (1961). Psychology of judgment and choice: A theoretical essay. New York: Wiley.Google Scholar
  216. Richter, M. K. (1966). Revealed preference theory. Econometrica, 34, 635–645.CrossRefGoogle Scholar
  217. Richter, M. K. (1980). Continuous and semicontinuous utility. International Economic Review, 21, 293–299.CrossRefGoogle Scholar
  218. Rigotti, L., & Shannon, C. (2005). Uncertainty and risk in financial markets. Econometrica, 73, 203–243.CrossRefGoogle Scholar
  219. Roemer, J. E. (1999). The democratic political economy of progressive income taxation. Econometrica, 67, 1–19.CrossRefGoogle Scholar
  220. Roy, B. (1985). Méthodologie multicritère d’Aide à la décision. Paris: Economica.Google Scholar
  221. Roy, B. (1990a). Decision-aid and decision-making. European Journal of Operational Research, 45, 324–331.Google Scholar
  222. Roy, B. (1990b). The outranking approach and the foundations of ELECTRE methods. In: C. A. Bana e Costa (Ed.), Readings in multiple criteria decision aid (pp. 155–183). Berlin: Springer-Verlag.Google Scholar
  223. Rubinstein, A. (1988). Similarity and decision-making under risk (is there a utility theory resolution to the Allais paradox)? Journal of Economic Theory, 46, 145–153.CrossRefGoogle Scholar
  224. Rubinstein, A., & Salant, Y. (2006). A model of choice from lists. Theoretical Economics, 1, 3–17.Google Scholar
  225. Salant, Y. (2003). Limited computational resources favor rationality. Discussion Paper 320, Center for the Study of Rationality, Hebrew University of Jerusalem.Google Scholar
  226. Samuelson, P. (1938). A note on the pure theory of consumers’ behavior. Economica, 5, 61–71.CrossRefGoogle Scholar
  227. Schick, F. (1986). Dutch bookies and money pumps. The Journal of Philosophy, 83(2), 112–119.CrossRefGoogle Scholar
  228. Schmeidler, D. (1971). A condition for the completeness of partial preference relations. Econometrica, 39(2), 403–404.CrossRefGoogle Scholar
  229. Schumm, G. F. (1987). Transitivity, preference and indifference. Philosophical Studies, 52(3), 435–437.CrossRefGoogle Scholar
  230. Schwartz, T. (1976). Choice functions, “rationality” conditions, and variations on the weak axiom of revealed preference. Journal of Economic Theory, 13, 414–427.CrossRefGoogle Scholar
  231. Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23, 113–128.CrossRefGoogle Scholar
  232. Sen, A. (1971). Choice functions and revealed preferences. Review of Economic Studies, 38, 307–317.CrossRefGoogle Scholar
  233. Sen, A. (1986). Social choice theory. In: K. J. Arrow & M. D. Intriligator (Eds.), Handbook of mathematical economics (Vol. III, pp. 1073–1181). North-Holland: Elsevier Science Publishers.Google Scholar
  234. Sen, A. (1993). Internal consistency of choice. Econometrica, 61, 495–521.CrossRefGoogle Scholar
  235. Simon, H. A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, 69, 99–118.CrossRefGoogle Scholar
  236. Simon, H. A. (1982). Models of bounded rationality. Cambridge, MA: MIT Press.Google Scholar
  237. Sondermann, D. (1980). Utility representations for partial orders. Journal of Economic Theory, 23, 183–188.CrossRefGoogle Scholar
  238. Stanley, R. P. (1999). Enumerative combinatorics: Volume 2. Cambridge Studies in Advanced Mathematics, Vol. 62, New York: Cambridge University Press.Google Scholar
  239. Suzumura, K. (1983). Rational choice, collective decisions, and social welfare. New York: Cambridge University Press.CrossRefGoogle Scholar
  240. Swistak, P. (1980). Some representation problems for semiorders. Journal of Mathematical Psychology, 21, 124–135.CrossRefGoogle Scholar
  241. Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529–539.Google Scholar
  242. Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76(1), 31–48.CrossRefGoogle Scholar
  243. Tversky, A. (1972). Eliminations by aspects: A theory of choice. Psychological Review, 79, 281–299.CrossRefGoogle Scholar
  244. Tversky, A., & Kahneman, D. (1974). Judgement under uncertainty: Heuristics and biases. Science, 185, 1124–1131.CrossRefGoogle Scholar
  245. Tversky, A., & Kahneman, D. (1991). Loss aversion in riskless choice: A reference-dependent model. Quarterly Journal of Economics, 106, 1039–1061.CrossRefGoogle Scholar
  246. Tyson, C. J. (2013). Behavioral implications of shortlisting procedures. Social Choice and Welfare, 41, 941–963.CrossRefGoogle Scholar
  247. Wakker, P. P. (1988). Continuity of preference relations for separable topologies. International Economic Review, 29, 105–110.CrossRefGoogle Scholar
  248. Watson, S. (1992). The construction of topological spaces: Planks and resolutions. In: M. Hus̄ek & J. van Mill (Eds.), Recent progress in general topology (pp. 673–757). North-Holland, Amsterdam.Google Scholar
  249. Wiener, N. (1914). Contribution to the theory of relative position. Mathematical Proceedings of the Cambridge Philosophical Society, 17, 441–449.Google Scholar
  250. Yee, M., Dahan, E., Hauser, J. R., & Orlin, J. (2007). Greedoid-based noncompensatory inference. Marketing Science, 26(4), 532–549.CrossRefGoogle Scholar
  251. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Economics and BusinessUniversity of CataniaCataniaItaly

Personalised recommendations