Acosta-González A, Martirani-von Abercron SM, Rosselló-Móra R, Wittich RM, Marqués S (2016) The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the Prestige oil spill. Environ Sci Pollut Res Int 22:15200–15214. https://doi.org/10.1007/s11356-015-4458-y
CAS
CrossRef
Google Scholar
Alvarez HM (2003) Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegr 52:35–42. https://doi.org/10.1016/S0964-8305(02)00120-8
CAS
CrossRef
Google Scholar
Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386. https://doi.org/10.1007/s002030050341
CAS
CrossRef
PubMed
Google Scholar
Alvarez HM, Silva RA, Herrero M, Hernández MA, Villalba MS (2013) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:2119–2130. https://doi.org/10.1007/s00253-012-4360-1
CAS
CrossRef
Google Scholar
Amouric A, Quéméneur M, Grossi V, Liebgott PP, Auria R, Casalot L (2010) Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete. J Appl Microbiol 108:1903–1916. https://doi.org/10.1111/j.1365-2672.2009.04592.x
CAS
CrossRef
PubMed
Google Scholar
Andreoni V, Bernasconi S, Colombo M, van Beilen JB, Cavalca L (2000) Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2:572–577. http://doi.org/0.1046/j.1462-2920.2000.00134.x
CAS
CrossRef
PubMed
Google Scholar
Ashraf W, Murrell JC (1990) Purification and characterization of a NAD+-dependent secondary alcohol dehydrogenase from propane-grown Rhodococcus rhodochrous PNKb1. Arch Microbiol 153:163–168
CAS
CrossRef
Google Scholar
Ashraf W, Murrell JC (1992) Genetic, biochemical and immunological evidence for the involvement of two alcohol dehydrogenases in the metabolism of propane by Rhodococcus rhodochrous PNKb1. Arch Microbiol 157:488–492
CAS
Google Scholar
Ashraf W, Mihdhir A, Murrell JC (1994) Bacterial oxidation of propane. FEMS Microbiol Lett 122:1–6
CAS
CrossRef
PubMed
Google Scholar
Babu J, Brown L (1984) New type of oxygenase involved in the metabolism of propane and isobutane. Appl Environ Microbiol 48:260–264
CAS
PubMed
PubMed Central
Google Scholar
Binazadeh M, Karimi IA, Li Z (2009) Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enzym Microb Technol 45:195–202. https://doi.org/10.1016/j.enzmictec.2009.06.001
CAS
CrossRef
Google Scholar
Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology (Reading, England) 147:2537–2543. https://doi.org/10.1099/00221287-147-9-2537
CrossRef
Google Scholar
Bredholt H, Josefsen K, Vatland A, Brunheim P, Eimhjellen K (1998) Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater. Can J Microbiol 44:330–340. https://doi.org/10.1139/w98-005
CAS
CrossRef
Google Scholar
Cappelletti M, Fedi S, Frascari D et al (2011) Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl Environ Microbiol 77:1619–1627. https://doi.org/10.1128/AEM.01987-10
CAS
CrossRef
PubMed
Google Scholar
Cappelletti M, Frascari D, Zannoni D, Fedi S (2012) Microbial degradation of chloroform. Appl Microbiol Biotechnol 96:1395–1409. https://doi.org/10.1007/s00253-012-4494-1
CAS
CrossRef
PubMed
Google Scholar
Cappelletti M, Di Gennaro P, D’Ursi P, Orro A, Mezzelani A, Landini M, Fedi S, Frascari D, Presentato A, Zannoni D, Milanesi L (2013) Genome sequence of Rhodococcussp. strain BCP1, a biodegrader of alkanes and chlorinated compounds. Genome Announc 9:75. https://doi.org/10.1128/genomeA.00657-13
CrossRef
Google Scholar
Cappelletti M, Presentato A, Milazzo G, Turner RJ, Fedi S, Frascari D, Zannoni D (2015) Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol 6:393. https://doi.org/10.3389/fmicb.2015.00393
CrossRef
PubMed
PubMed Central
Google Scholar
Cappelletti M, Fedi S, Zampolli J, Di Canito A, D’Ursi P, Orro A, Viti C, Milanesi L, Zannoni D, Di Gennaro P (2016) Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 1(9). https://doi.org/10.1016/j.resmic.2016.06.008
CAS
CrossRef
PubMed
Google Scholar
Cappelletti M, Frascari D, Pinelli D, Mezzetti F, Fedi S, Zannoni D (2017a) Aerobic cometabolism of 1,1,2,2-TeCA by a propane-growing microbial consortium (C2): diversity of alkane monooxygenase genes and design of an on-site bioremediation process. Int Biodeterior Biodegr 119:649–660. https://doi.org/10.1016/j.ibiod.2016.09.019
CAS
CrossRef
Google Scholar
Cappelletti M, Pinelli D, Fedi S, Zannoni D, Frascari D (2017b) Aerobic co-metabolism of 1,1,2,2-tetrachloroethane by Rhodococcus aetherivorans TPA grown on propane: kinetic study and bioreactor configuration analysis. J Chem Technol Biotechnol 30:2420–2411. https://doi.org/10.1002/jctb.5335
CAS
CrossRef
Google Scholar
Cardini G, Jurtshuk P (1970) The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. J Biol Chem 245:2789–2796
CAS
PubMed
Google Scholar
Castro AR, Rocha I, Alves MM, Pereira MA (2016) Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express 6:35. https://doi.org/10.1186/s13568-016-0207-y
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ciavarelli R, Cappelletti M, Fedi S, Pinelli D, Frascari D (2012) Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherivorans BCP1 in continuous-flow biofilm reactors. Bioprocess Biosyst Eng 35:667–681. https://doi.org/10.1007/s00449-011-0647-3
CAS
CrossRef
PubMed
Google Scholar
Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8:1228–1239. https://doi.org/10.1111/j.1462-2920.2006.01015.x
CAS
CrossRef
PubMed
Google Scholar
Coleman NV, Yau S, Wilson NL, Nolan LM, Migocki MD, Ly MA, Crossett B, Holmes AJ (2011) Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. Environ Microbiol Rep 3:297–307. https://doi.org/10.1111/j.1758-2229.2010.00225.x
CAS
CrossRef
PubMed
Google Scholar
Cortes M, de Carvalho C (2015) Effect of carbon sources on lipid accumulation in Rhodococcus cells. Biochem Eng J 94:100–105. https://doi.org/10.1016/j.bej.2014.11.017
CAS
CrossRef
Google Scholar
de Carvalho CC, Parreño-Marchante B, Neumann G, da Fonseca MM, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67:383–388. https://doi.org/10.1007/s00253-004-1750-z
CAS
CrossRef
PubMed
Google Scholar
Di Gennaro P, Zampolli J, Presti I, Cappelletti M, D'Ursi P, Orro A, Mezzelani A, Milanesi L (2014) Genome sequence of Rhodococcus opacus strain R7, a biodegrader of mono- and polycyclic aromatic hydrocarbons. Genome Announc 2:e00827–e00814. https://doi.org/10.1128/genomeA.00827-14
CrossRef
PubMed
PubMed Central
Google Scholar
Ekprasert J (2014) Functional characterisation of alkane-degrading monooxygenases in Rhodococcus jostii strain 8. Doctoral thesis, University of East Anglia
Google Scholar
Fournier D, Hawari J, Halasz A, Streger SH, McClay KR, Masuda H, Hatzinger PB (2009) Aerobic biodegradation of N-nitrosodimethylamine by the propanotroph Rhodococcus ruber ENV425. Appl Environ Microbiol 75:5088–5093. https://doi.org/10.1128/AEM.00418-09
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Frascari D, Pinelli D, Nocentini M, Fedi S, Pii Y, Zannoni D (2006) Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1. Appl Microbiol Biotechnol 73:421–428. https://doi.org/10.1007/s00253-006-0433-3
CAS
CrossRef
PubMed
Google Scholar
Frascari D, Pinelli D, Nocentini M, Baleani E, Cappelletti M, Fedi S (2008) A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp PB1. Biochem Eng J 42:139–147. https://doi.org/10.1016/j.bej.2008.06.011
CAS
CrossRef
Google Scholar
Furuya T, Hirose S, Semba H, Kino K (2011) Identification of the regulator gene responsible for the acetone-responsive expression of the binuclear iron monooxygenase gene cluster in Mycobacteria. J Bacteriol 193:5817–5823. https://doi.org/10.1128/JB.05525-11
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Furuya T, Hayashi M, Semba H, Kino K (2013) The mycobacterial binuclear iron monooxygenases require a specific chaperonin-like protein for functional expression in a heterologous host. FEBS J 280:817–826. https://doi.org/10.1111/febs.12070
CAS
CrossRef
PubMed
Google Scholar
Habib S, Ahmad SA, Johari WLW, Shukor MYA, Alias SA, Khalil KA, Yasid NA (2018) Evaluation of conventional and response surface level optimisation of n-dodecane (n-C12) mineralisation by psychrotolerant strains isolated from pristine soil at Southern Victoria Island, Antarctica. Microb Cell Factories 17:44. https://doi.org/10.1186/s12934-018-0889-8
CAS
CrossRef
Google Scholar
Hamamura N, Olson SH, Ward DM, Inskeep WP (2006) Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol 72:6316–6324. https://doi.org/10.1128/AEM.01015-06
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hamamura N, Fukui M, Ward DM, Inskeep WP (2008) Assessing soil microbial populations responding to crude-oil amendment at different temperatures using phylogenetic, functional gene (alkB) and physiological analyses. Environ Sci Technol 42:7580–7586. https://doi.org/10.1021/es800030f
CAS
CrossRef
PubMed
Google Scholar
Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems-biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344. https://doi.org/10.1016/j.bbagen.2006.07.017
CAS
CrossRef
PubMed
Google Scholar
Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A (2013) Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar Pollut Bull 73:300–305. https://doi.org/10.1016/j.marpolbul.2013.05.002
CAS
CrossRef
PubMed
Google Scholar
Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:600. https://doi.org/10.1186/1471-2164-9-600
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach AL, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219. https://doi.org/10.1371/journal.pgen.1002219
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Holmes AJ, Coleman NV (2008) Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts. Antonie Van Leeuwenhoek 94:75–84. https://doi.org/10.1007/s10482-008-9227-1
CAS
CrossRef
PubMed
Google Scholar
Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biosurfactants in hydrocarbon utilization. Biodegradation 1:107–119
CAS
CrossRef
PubMed
Google Scholar
Hua F, Wang HQ (2014) Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms. Biotechnol Biotechnol Equip 28:165–175. https://doi.org/10.1080/13102818.2014.906136
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Huang L, Ma T, Li D, Liang FL, Liu RL, Li GQ (2008) Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis. Mar Pollut Bull 56:1714–1718. https://doi.org/10.1016/j.marpolbul.2008.07.007
CAS
CrossRef
PubMed
Google Scholar
Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79:7082–7090. https://doi.org/10.1128/AEM.01664-13
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Iwabuchi N, Sharma PK, Sunairi M et al (2009) Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture. Environ Sci Technol 43:8290–8294. https://doi.org/10.1021/es901208s
CAS
CrossRef
PubMed
Google Scholar
Ji Y, Mao G, Wang Y, Bartlam M (2013) Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front Microbiol 4:58. https://doi.org/10.3389/fmicb.2013.00058
CrossRef
PubMed
PubMed Central
Google Scholar
Jurelevicius D, Alvarez VM, Peixoto R et al (2013) The Use of a combination of alkB primers to better characterize the distribution of alkane-degrading bacteria. PLoS One 8:e66565. https://doi.org/10.1371/journal.pone.0066565
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kim IS, Foght JM, Gray MR (2002) Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol Bioeng 80:650–659. https://doi.org/10.1002/bit.10421
CAS
CrossRef
PubMed
Google Scholar
Kloos K, Munch JC, Schloter M (2006) A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 66:486–496. https://doi.org/10.1016/j.mimet.2006.01.014
CAS
CrossRef
PubMed
Google Scholar
Koch DJ, Chen MM, van Beilen JB, Arnold FH (2009) In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6. Appl Environ Microbiol 75:337–344. https://doi.org/10.1128/AEM.01758-08
CAS
CrossRef
PubMed
Google Scholar
Kohno T, Sugimoto Y, Sei K, Mori K (2002) Design of PCR primers and gene probes for general detection of alkane-degrading bacteria. Microbes Environ 17:114–121. https://doi.org/10.1264/jsme2.17.114
CrossRef
Google Scholar
Kolouchová I, Schreiberová O, Masák J, Sigler K, Řezanka T (2012) Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography–tandem mass spectrometry. Folia Microbiol (Praha) 57:473–483. https://doi.org/10.1007/s12223-012-0156-z
CAS
CrossRef
Google Scholar
Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128. https://doi.org/10.1128/JB.185.24.7120-7128.2003
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192. https://doi.org/10.1263/jbb.102.184
CAS
CrossRef
PubMed
Google Scholar
Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on normal-alkanes. Appl Environ Microbiol 44:864–870
CAS
PubMed
PubMed Central
Google Scholar
Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Asp Med 26:459–516. https://doi.org/10.1016/j.mam.2005.10.001
CAS
CrossRef
Google Scholar
Kubota M, Nodate M, Yasumoto-Hirose M, Uchiyama T, Kagami O, Shizuri Y, Misawa N (2005) Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments. Biosci Biotechnol Biochem 69:2421–2430. https://doi.org/10.1271/bbb.69.2421
CAS
CrossRef
PubMed
Google Scholar
Kunihiro N, Haruki M, Takano K, Morikawa M, Kanaya S (2005) Isolation and characterization of Rhodococcus sp. strains TMP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pristane) at moderately low temperatures. J Biotechnol 115:129–136. https://doi.org/10.1016/j.jbiotec.2004.07.018
CAS
CrossRef
PubMed
Google Scholar
Kuyukina MS, Ivshina IB, Rychkova MI, Chumakov OB (2000) Effect of cell lipid composition on the formation of nonspecific antibiotic resistance in alkanotrophic rhodococci. Microbiology 69:62–69. https://doi.org/10.1007/BF02757257
CrossRef
Google Scholar
Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32:559–568. https://doi.org/10.1016/j.nbt.2015.03.006
CAS
CrossRef
Google Scholar
Laczi K, Kis Á, Horváth B, Maróti G, Hegedüs B, Perei K, Rákhely G (2015) Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 99:9745–9759. https://doi.org/10.1007/s00253-015-6936-z
CAS
CrossRef
PubMed
Google Scholar
Lanfranconi MP, Alvarez HM (2017) Rewiring neutral lipids production for the de novo synthesis of wax esters in Rhodococcus opacus PD630. J Biotechnol 260:67–73. https://doi.org/10.1016/j.jbiotec.2017.09.009
CAS
CrossRef
PubMed
Google Scholar
Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70. https://doi.org/10.1023/A:1001799711799
CAS
CrossRef
PubMed
Google Scholar
Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290. https://doi.org/10.1016/j.copbio.2005.04.007
CAS
CrossRef
PubMed
Google Scholar
Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315
CAS
PubMed
PubMed Central
Google Scholar
Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479. https://doi.org/10.1016/S0168-6445(03)00023-8
CAS
CrossRef
PubMed
Google Scholar
Lee EH, Kim J, Cho KS, Ahn YG, Hwang GS (2010) Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ Sci Pollut Res Int 17:64–77. https://doi.org/10.1007/s11356-009-0238-x
CAS
CrossRef
PubMed
Google Scholar
Liang J-L, Nie Y, Wang M, Xiong G, Wang Y-P, Maser E, Wu X-L (2016a) Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium. Mol Microbiol 99:338–359. https://doi.org/10.1111/mmi.13232
CAS
CrossRef
PubMed
Google Scholar
Liang J-L, JiangYang J-H, Nie Y, Wu X-L (2016b) Regulation of the alkane hydroxylase CYP153 gene in a gram-positive alkane-degrading bacterium, Dietzia sp. strain DQ12-45-1b. Appl Environ Microbiol 82:608–619. https://doi.org/10.1128/AEM.02811-15
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Likhoshvay A, Lomakina A, Grachev M (2014) The complete alk sequences of Rhodococcus erythropolis from Lake Baikal. SpringerPlus 3:621. https://doi.org/10.1186/2193-1801-3-621
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ludwig B, Akundi A, Kendall K (1995) A long-chain secondary alcohol dehydrogenase from Rhodococcus erythropolis ATCC 4277. Appl Environ Microbiol 61:3729–3733
CAS
PubMed
PubMed Central
Google Scholar
Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333. https://doi.org/10.1139/w04-008
CAS
CrossRef
PubMed
Google Scholar
MacMichael G, Brown L (1987) Role of carbon dioxide in catabolism of propane by ‘Nocardia parafinicum’ (Rhodococcus rhodochrous). Appl Environ Microbiol 53:65–69
CAS
PubMed
PubMed Central
Google Scholar
Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl Environ Microbiol 60:542–548.
Google Scholar
Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092. https://doi.org/10.1128/AEM.69.6.3085-3092.2003
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
McCarl V, Somerville MV, Ly MA, Henry R, Liew EF, Wilson NL, Holmes A, Coleman N (2018) Heterologous expression of alkene monooxygenases from Mycobacterium in Gram positive and Gram negative bacterial hosts. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00397-18
McDermott C, Heffron JJ (2013) Toxicity of industrially relevant chlorinated organic solvents in vitro. Int J Toxicol 32:136–145. https://doi.org/10.1177/1091581813482006
CAS
CrossRef
PubMed
Google Scholar
McDonald IR, Uchiyama H, Kambe S, Yagi O, Murrell JC (1997) The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M. Appl Environ Microbiol 63:1898–1904
CAS
PubMed
PubMed Central
Google Scholar
McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. PNAS 103:15582–15587. https://doi.org/10.1073/pnas.0607048103
CrossRef
PubMed
PubMed Central
Google Scholar
Mikolasch A, Omirbekova A, Schumann P, Reinhard A, Sheikhany H, Berzhanova R, Mukasheva T, Schauer F (2015) Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan. Appl Microbiol Biotechnol 99:4071–4084. https://doi.org/10.1007/s00253-014-6320-4
CAS
CrossRef
PubMed
Google Scholar
Nakajima K, Sato A, Takahara Y, Iida T (1985) Microbial oxidation of isoprenoid alkanes, phytane, norpristane and farnesane. Agric Biol Chem 49:1993–2002
CAS
Google Scholar
Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166
CAS
PubMed
PubMed Central
Google Scholar
Nhi-Cong LT, Mikolasch A, Klenk H-P, Schauer F (2009) Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane(pristane) in Rhodococcus ruber and Mycobacterium neoaurum. Int Biodeter Biodegr 63:201–207. https://doi.org/10.1016/j.ibiod.2008.09.002
CAS
CrossRef
Google Scholar
Nie Y, Chi C-Q, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968. https://doi.org/10.1038/srep04968
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Orro A, Cappelletti M, D’Ursi P, Milanesi L, Di Canito A, Zampolli J, Collina E, Decorosi F, Viti C, Fedi S, Presentato A, Zannoni D, Di Gennaro P (2015) Genome and Phenotype Microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 10:e0139467. https://doi.org/10.1371/journal.pone.0139467.s025
CrossRef
PubMed
PubMed Central
Google Scholar
Panicker G, Mojib N, Aislabie J, Bej AK (2010) Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie Van Leeuwenhoek 97:275–287. https://doi.org/10.1007/s10482-009-9408-6
CAS
CrossRef
PubMed
Google Scholar
Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611. https://doi.org/10.1111/j.1365-2672.2006.03267.x
CAS
CrossRef
PubMed
Google Scholar
Pirog TP, Korzh YV, Shevchuk TA, Tarasenko DA (2008) Peculiarities of C2 metabolism and intensification of the synthesis of surface-active substances in Rhodococcus erythropolis EK-1 grown in ethanol. Microbiology 77:665–673. https://doi.org/10.1134/S0026261708060039
CAS
CrossRef
Google Scholar
Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia AM (2008) Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 104:251–259. https://doi.org/10.1111/j.1365-2672.2007.03544.x
CAS
CrossRef
PubMed
Google Scholar
Rapp P, Gabriel-Jürgens LH (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149:2879–28790. https://doi.org/10.1099/mic.0.26188-0
CAS
CrossRef
PubMed
Google Scholar
Riebel A, Dudek HM, de Gonzalo G, Stepniak P, Rychlewski L, Fraaije MW (2012) Expanding the set of rhodococcal Baeyer-Villiger monooxygenases by high-throughput cloning, expression and substrate screening. Appl Microbiol Biotechnol 95:1479–1489. https://doi.org/10.1007/s00253-011-3823-0
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490. https://doi.org/10.1111/j.1462-2920.2009.01948.x
CAS
CrossRef
PubMed
Google Scholar
Saeki H, Furuhashi K (1994) Cloning and characterization of a Nocardia corallina B-276 gene cluster encoding alkene monooxygenase. J Biosci Bioeng 78:399–406. https://doi.org/10.1016/0922-338X(94)90037-X
CAS
CrossRef
Google Scholar
Sameshima Y, Honda K, Kato J, Omasa T, Ohtake H (2008) Expression of Rhodococcus opacus alkB genes in anhydrous organic solvents. J Biosci Bioeng 106:199–203. https://doi.org/10.1263/jbb.106.199
CAS
CrossRef
PubMed
Google Scholar
Schenkels P, Duine JA (2000) Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Microbiology 146:775–785. https://doi.org/10.1099/00221287-146-4-775
CAS
CrossRef
PubMed
Google Scholar
Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8(2):334–346. https://doi.org/10.1111/j.1462-2920.2005.00899.x
CAS
CrossRef
PubMed
Google Scholar
Semprini L, Dolan ME, Hopkins GD, McCarty PL (2009) Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane and 1,1-dichloroethene. J Contam Hydrol 103(3–4):157–167. https://doi.org/10.1016/j.jconhyd.2008.10.005
CAS
CrossRef
PubMed
Google Scholar
Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemist 33:12787–12794
CAS
CrossRef
Google Scholar
Shanklin J, Achim C, Schmidt H, Fox BG, Münck E (1997) Mössbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci USA 94:2981–2986. https://doi.org/10.1073/pnas.94.7.2981
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sharma SL, Pant A (2000) Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus. Biodegradation 11(5):289–294. https://doi.org/10.1023/A:1011185806974
CAS
CrossRef
PubMed
Google Scholar
Sharp JO, Sales CM, LeBlanc JC, Liu J, Wood TK, Eltis LD, Mohn WW, Alvarez-Cohen L (2007) An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 73:6930–6938. https://doi.org/10.1128/AEM.01697-07
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Shennan JL (2006) Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol 81:237–256. https://doi.org/10.1002/jctb.1388
CAS
CrossRef
Google Scholar
Sluis MK, Sayavedra-Soto LA, Arp DJ (2002) Molecular analysis of the soluble butane monooxygenase from “Pseudomonas butanovora”. Microbiology 148:3617–3629. https://doi.org/10.1099/00221287-148-11-3617
CAS
CrossRef
PubMed
Google Scholar
Smits THM, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1:307–317. https://doi.org/10.1046/j.1462-2920.1999.00037.x
CAS
CrossRef
PubMed
Google Scholar
Smits THM, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184:1733–1742. https://doi.org/10.1128/JB.184.6.1733-1742.2002
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027. https://doi.org/10.1128/AEM.69.12.7019-7027.2003
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Stancu MM (2015) Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents. Braz J Microbiol 46:1009–1018. https://doi.org/10.1590/S1517-838246420140462
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Stratton HM, Brooks PR, Carr EL, Seviour RJ (2003) Effects of culture conditions on the mycolic acid composition of isolates of Rhodococcus spp. from activated sludge foams. Syst Appl Microbiol 26:165–171. https://doi.org/10.1078/072320203322345994
CAS
CrossRef
PubMed
Google Scholar
Stroud JL, Paton GI, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102:1239–1253. https://doi.org/10.1111/j.1365-2672.2007.03401.x
CAS
CrossRef
PubMed
Google Scholar
Takei D, Washio K, Morikawa M (2008) Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnol Lett 30:1447–1452. https://doi.org/10.1007/s10529-008-9710-9
CAS
CrossRef
PubMed
Google Scholar
Táncsics A, Benedek T, Szoboszlay S, Veres PG, Farkas M, Máthé I, Márialigeti K, Kukolya J, Lányi S, Kriszt B (2015) The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus. Syst Appl Microbiol 38:1–7. https://doi.org/10.1016/j.syapm.2014.10.010
CAS
CrossRef
PubMed
Google Scholar
Tao L, Wagner LW, Rouvière PE, Cheng Q (2006) Metabolic engineering for synthesis of aryl carotenoids in Rhodococcus. Appl Microbiol Biotechnol 70:222–228. https://doi.org/10.1007/s00253-005-0064-0
CAS
CrossRef
PubMed
Google Scholar
van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21. https://doi.org/10.1007/s00253-006-0748-0
CAS
CrossRef
PubMed
Google Scholar
van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630. https://doi.org/10.1099/00221287-147-6-1621
CrossRef
PubMed
Google Scholar
van Beilen JB, Neuenschwander M, Smits TH, Roth C, Balada SB, Witholt B (2002a) Rubredoxins involved in alkane oxidation. J Bacteriol 184:1722–1732. https://doi.org/10.1128/JB.184.6.1722-1732.2002
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
van Beilen JB, Smits TH, Whyte LG, Schorcht S, Röthlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002b) Alkane hydroxylase homologues in Gram-positive strains. Environ Microbiol 4:676–682. https://doi.org/10.1046/j.1462-2920.2002.00355.x
CrossRef
PubMed
Google Scholar
van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. OGST 58:427–440. https://doi.org/10.2516/ogst:2003026
CrossRef
Google Scholar
van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65. https://doi.org/10.1128/AEM.72.1.59-65.2006
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Viggor S, Jõesaar M, Vedler E, Kiiker R, Pärnpuu L, Heinaru A (2015) Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water. Mar Pollut Bull 101:507–516. https://doi.org/10.1016/j.marpolbul.2015.10.064
CAS
CrossRef
PubMed
Google Scholar
Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89:339–348. https://doi.org/10.1046/j.1365-2672.2000.01121.x
CAS
CrossRef
PubMed
Google Scholar
Wang B, Chu KH (2017) Cometabolic biodegradation of 1,2,3-trichloropropane by propane-oxidizing bacteria. Chemosphere 168:1494–1497. https://doi.org/10.1016/j.chemosphere.2016.12.007
CAS
CrossRef
PubMed
Google Scholar
Warhust AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73
CrossRef
Google Scholar
Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:REVIEWS3003. https://doi.org/10.1186/gb-2000-1-6-reviews3003
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584
CAS
PubMed
PubMed Central
Google Scholar
Whyte LG, Slagman SJ, Pietrantonio F et al (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968
CAS
PubMed
PubMed Central
Google Scholar
Whyte LG, Schultz A, van Beilen JB et al (2002a) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150. https://doi.org/10.1111/j.1574-6941.2002.tb00975.x
CAS
CrossRef
PubMed
Google Scholar
Whyte LG, Smits THM, Labbé D, Witholt B, Greer CW, van Beilen JB (2002b) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942. https://doi.org/10.1128/AEM.68.12.5933-5942.2002
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Woods BN, Murrell JC (1989) The metabolism of propane in Rhodococcus vhohchvous PNKbl. J Gen Microbiol 135:2335–2344
CAS
Google Scholar
Yakimov MM, Giuliano L, Bruni V, Scarfì S, Golyshin PN (1999) Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol 22:249–256
CAS
PubMed
Google Scholar
Yamashita S, Satoi M, Iwasa Y, Honda K, Sameshima Y, Omasa T, Kato J, Ohtake H (2007) Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol 74:761–767. https://doi.org/10.1007/s00253-006-0729-3
CAS
CrossRef
PubMed
Google Scholar
Yang HY, Jia RB, Chen B, Li L (2014) Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ Sci Pollut Res Int 21:11086–11093. https://doi.org/10.1007/s11356-014-3027-0
CAS
CrossRef
PubMed
Google Scholar
Yuste L, Corbella ME, Turiégano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75. https://doi.org/10.1111/j.1574-6941.2000.tb00700.x
CAS
CrossRef
PubMed
Google Scholar
Zampolli J, Collina E, Lasagni M, Di Gennaro P (2014) Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. AMB Express 4:73. https://doi.org/10.1186/s13568-014-0073-4
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Zheng YT, Toyofuku M, Nomura N, Shigeto S (2013) Correlation of carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74. Anal Chem 85:7295–7301. https://doi.org/10.1021/ac401188f
CAS
CrossRef
PubMed
Google Scholar