Skip to main content

Genomics of Rhodococcus

Part of the Microbiology Monographs book series (MICROMONO,volume 16)

Abstract

Members of the genus Rhodococcus have metabolic versatility and unique adaptation capacities to fluctuating environmental conditions, enabling the colonization of a wide variety of environments; they also play an important role in nutrient cycling and have potential applications in bioremediation, biotransformations and biocatalysis. Rhodococcus spp. are mainly distributed in soil, water and marine sediments, although some of them are also pathogens for humans, animals and plants. Consistent with the wide catabolic diversity, Rhodococcus spp. possess large and complex genomes (up to 10.1 Mbp), which contain a multiplicity of catabolic genes, high genetic redundancy of biosynthetic pathways and large catabolic plasmids, the latter encoding peculiar metabolic and physiological traits. Recently, the progress in sequencing technology led to a dramatic increase in the number of sequenced Rhodococcus genomes, which have been investigated through diverse bioinformatic approaches. In particular, whole-genome comparative and genome-based functional studies were associated to omic technologies for the study of the global Rhodococcus cell response with the aim of providing insight into the genetic basis of specific catabolic capacities and phenotypic traits. Lastly, genome-based advances in Rhodococcus engineering led to the first design of molecular toolkits for tunable and targeted genome editing. Besides this, genome-based metabolic models were developed to make metabolic predictions of the Rhodococcus cell response to specific growth conditions. Both the synthetic and system approaches offered new opportunities for genome-scale rational design of Rhodococcus cell for environmental and industrial applications.

Keywords

  • Rhodococcus genome
  • Comparative genomics
  • Functional genomics
  • Gene redundancy
  • Catabolic plasmid

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-11461-9_2
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-11461-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ali A (2013) Microbial comparative genomics: an overview of tools and insights into the genus Corynebacterium. J Bacteriol Parasitol 04:1–16. https://doi.org/10.4172/2155-9597.1000167

    CrossRef  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D et al (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    CAS  PubMed  CrossRef  Google Scholar 

  • Amara S, Seghezzi N, Otani H et al (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Rep 6:24985. https://doi.org/10.1038/srep24985

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158. https://doi.org/10.3389/fmicb.2011.00158

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Anastasi E, MacArthur I, Scortti M (2016) Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol 8(10):3140–3148

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147

    PubMed  CrossRef  Google Scholar 

  • Cappelletti M (2010) Monooxygenases involved in the n-alkanes metabolism by Rhodococcus sp. BCP1. PhD Thesis Dissertation, University of Bologna

    Google Scholar 

  • spiepr A3B2 twb=.25w?>Cappelletti M, Fedi S, Frascari D et al (2011) Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl Environ Microbiol 77:1619–1627

    CAS  PubMed  CrossRef  Google Scholar 

  • Cappelletti M, Frascari ZD et al (2012) Microbial degradation of chloroform. Appl Microbiol Biotechnol 96:1395–1409

    CAS  PubMed  CrossRef  Google Scholar 

  • spiepr A3B2 tlsb=-.02w?>Cappelletti M, Di Gennaro P, D’Ursi P et al (2013) Genome sequence of Rhodococcus sp. strain BCP1, a biodegrader of alkanes and chlorinated compounds. Genome Announc 1(5):e00657–e00613. https://doi.org/10.1128/genomeA.00657-13

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cappelletti M, Presentato A, Milazzo G et al (2015) Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol 6:393. https://doi.org/10.3389/fmicb.2015.00393

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cappelletti M, Fedi S, Zampolli J et al (2016) Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 167:1–9

    CrossRef  CAS  Google Scholar 

  • Cappelletti M, Pinelli D, Fedi S (2017) Aerobic co-metabolism of 1,1,2,2-tetrachloroethane by Rhodococcus aetherivorans TPA grown on propane: kinetic study and bioreactor configuration analysis. J Chem Technol Biotechnol 93:155–165

    CrossRef  CAS  Google Scholar 

  • Carroll AC, Wong A (2018) Plasmid persistence: costs, benefits, and the plasmid paradox. Can J Microbiol 64:293–304

    CAS  PubMed  CrossRef  Google Scholar 

  • Castro AR, Rocha I, Alves MM et al (2016) Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express 6:35. https://doi.org/10.1186/s13568-016-0207-y

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ceniceros A, Dijkhuizen L, Petrusma M et al (2017) Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 18:593. https://doi.org/10.1186/s12864-017-3966-1

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chen CW, Huang CH, Lee HH et al (2002) Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet 18:522–529

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen Y, Ding Y, Yang L et al (2014) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res 42(2):1052–1064

    CAS  PubMed  CrossRef  Google Scholar 

  • Choi KY, Kim D, Sul WJ et al (2005) Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol Lett 252:207–213

    CAS  PubMed  CrossRef  Google Scholar 

  • Choi KY, Kim D, Chae JC et al (2007) Requirement of duplicated operons for maximal metabolism of phthalate by Rhodococcus sp. strain DK17. Biochem Biophys Res Commun 357:766–771

    CAS  PubMed  CrossRef  Google Scholar 

  • Ciavarelli R, Cappelletti M, Fedi S et al (2012) Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherovorans BCP1 in continuous-flow biofilm reactors. Bioprocess Biosyst Eng 35:667–681

    CAS  PubMed  CrossRef  Google Scholar 

  • Costa JSD, Herrero OM, Alvarez HM et al (2015) Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1. Microbiology 161:593–610

    CAS  CrossRef  Google Scholar 

  • Creason AL, Vandeputte OM, Savory EA et al (2014a) Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS One 9(7):e101996. https://doi.org/10.1371/journal.pone.0101996

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Creason AL, Davis EW II, Putnam ML et al (2014b) Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus. Front Plant Sci 5:406. https://doi.org/10.3389/fpls.2014.00406

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Crespi M, Vereecke D, Temmerman W et al (1994) The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J Bacteriol 176:2492–2501

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Crombie TA, Rhodius VA, Miller MC et al (2015) Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle. Environ Microbiol 17:3314–3329

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726

    CrossRef  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, Costa SS, Fernandes P et al (2014) Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front Physiol 5:133. https://doi.org/10.3389/fphys.2014.00133

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • spiepr A3B2 tlsb=-.02w?>De Mot R, Nagy I, De Schrijver A et al (1997) Structural analysis of the 6 kb cryptic plasmid pFAJ2600 from Rhodococcus erythropolis NI86/21 and construction of Escherichia coliRhodococcus shuttle vectors. Microbiology 143:3137–3147

    PubMed  CrossRef  Google Scholar 

  • DeLorenzo DM, Rottinghaus AG, Henson WR et al (2018) Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth Biol 7(2):727–738

    CAS  PubMed  CrossRef  Google Scholar 

  • Denis-Larose C, Labbe D, Bergeron H et al (1997) Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several rhodococci. Appl Environ Microbiol 63:2915–2919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desomer J, Crespi M, Van Montagu M (1991) Illegitimate integration of non-replicative vectors in the genome of Rhodococcus fascians upon electrotransformation as an insertional mutagenesis system. Mol Microbiol 5:2115–2124

    CAS  PubMed  CrossRef  Google Scholar 

  • Di Canito A, Zampolli J, Orro A et al (2018) Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7. BMC Genomics 19:587

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Di Gennaro P, Rescalli E, Galli E et al (2001) Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from polycyclic aromatic hydrocarbon-contaminated soil. Res Microbiol 152:641–651

    PubMed  CrossRef  Google Scholar 

  • Di Gennaro P, Terreni P, Masi G et al (2010) Identification and characterization of genes involved in naphthalene degradation in Rhodococcus opacus R7. Appl Microbiol Biotechnol 87(1):297–308

    CAS  PubMed  CrossRef  Google Scholar 

  • Di Gennaro P, Zampolli J, Presti I et al (2014) Genome sequence of Rhodococcus opacus strain R7, a biodegrader of mono- and polycyclic aromatic hydrocarbons. Genome Announc 2(4):e00827–e00814. https://doi.org/10.1128/genomeA.00827-14

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dib JR, Wagenknecht M, Farías ME et al (2015) Strategies and approaches in plasmidome studies—uncovering plasmid diversity disregarding of linear elements? Front Microbiol 6:463. https://doi.org/10.3389/fmicb.2015.00463

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dodge AG, Wackett LP, Sadowsky MJ (2011) Plasmid localization and organization of melamine degradation genes in Rhodococcus sp strain Mel. Appl Environ Microbiol 78(5):1397–1403. https://doi.org/10.1128/AEM.06468-11

    CAS  CrossRef  PubMed  Google Scholar 

  • Dueholm MS, Albertsen M, D’Imperio S (2014) Complete genome of Rhodococcus pyridinivorans SB3094, a methyl-ethyl-ketone-degrading bacterium used for bioaugmentation. Genome Announc 2(3):e00525-14. https://doi.org/10.1128/genomeA.00525-14

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Duran R (1998) New shuttle vectors for Rhodococcus sp. R312 (formerly Brevibacterium sp. R312), a nitrile hydratase producing strain. J Basic Microbiol 38:101–106

    CAS  PubMed  CrossRef  Google Scholar 

  • Ellinger J, Schmidt-Dannert C (2017) Construction of a BioBrick™ compatible vector system for Rhodococcus. Plasmid 90:1–4. https://doi.org/10.1016/j.plasmid.2017.01.004

    CAS  CrossRef  PubMed  Google Scholar 

  • Fang H, Xu T, Cao D et al (2016) Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp. MET via both triazinone and phenyl rings cleavage. Sci Rep 6:32339. https://doi.org/10.1038/srep32339

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Francis I, De Keyser A, De Backer P et al (2012) pFiD188, the linear virulence plasmid of Rhodococcus fascians D188. MPMI 25:637–647

    CAS  PubMed  CrossRef  Google Scholar 

  • Francis IM, Stes E, Zhang Y et al (2016) Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. New Biotechnol 33:706–717

    CAS  CrossRef  Google Scholar 

  • Frascari D, Pinelli D, Nocentini M et al (2006) Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1. Appl Microbiol Biotechnol 73(2):421–428

    CAS  PubMed  CrossRef  Google Scholar 

  • Fukuda M, Shimizu S, Okita N et al (1998) Structural alteration of linear plasmids encoding the genes for polychlorinated biphenyl degradation in Rhodococcus strain RHA1. Antonie Leeuwenhoek 74:169–173

    CAS  PubMed  CrossRef  Google Scholar 

  • Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76(1):66–112. https://doi.org/10.1128/MMBR.05011-11

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gonçalves ER, Hara H, Miyazawa D et al (2006) Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1. Appl Environ Microbiol 72:6183–6193

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Goodfellow M, Alderson G, Chun J (1998) Rhodococcal systematics: problems and developments. Antonie Van Leeuwenhoek 74:3–20

    CAS  PubMed  CrossRef  Google Scholar 

  • Goordial J, Raymond-Bouchard I, Zolotarov Y et al (2016) Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/fiv154

  • Goris J, Konstantinidis KT, Klappenbach JA (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    CAS  PubMed  CrossRef  Google Scholar 

  • Gravouil K, Ferru-Clément R, Colas S et al (2017) Transcriptomics and lipidomics of the environmental strain Rhodococcus ruber point out consumption pathways and potential metabolic bottlenecks for polyethylene degradation. Environ Sci Technol 51:5172–5181. https://doi.org/10.1021/acs.est.7b00846

    CAS  CrossRef  PubMed  Google Scholar 

  • Grӧning JAD, Eulberg D, Tischler D et al (2014) Gene redundancy of two-component (chloro)phenol hydroxylases in Rhodococcus opacus 1CP. FEMS Microbiol Lett 361:68–75

    CrossRef  CAS  Google Scholar 

  • Grzeszik C, Lubbers M, Reh M et al (1997) Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology 143:1271–1286

    CAS  PubMed  CrossRef  Google Scholar 

  • Guo C, Wu ZL (2017) Construction and functional analysis of a whole-cell biocatalyst based on CYP108N7. Enzym Microb Technol 106:28–34

    CAS  CrossRef  Google Scholar 

  • Gürtler V, Mayall BC, Seviour R (2004) Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 28:377–403

    PubMed  CrossRef  CAS  Google Scholar 

  • Hara H, Eltis LD, Davies JE et al (2007) Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1. J Bacteriol 189:1641–1647

    CAS  PubMed  CrossRef  Google Scholar 

  • Hernández MA, Mohn WW, Martínez E et al (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:600. https://doi.org/10.1186/1471-2164-9-600

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hirasawa K, Ishii Y, Kobayashi M et al (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246

    CAS  PubMed  CrossRef  Google Scholar 

  • Holder JW, Ulrich JC, DeBono AC et al (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7(9):e1002219. https://doi.org/10.1371/journal.pgen.1002219

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Honda K, Yamashita S, Nakagawa H et al (2008) Stabilization of water-in-oil emulsion by Rhodococcus opacus B-4 and its application to biotransformation. Appl Microbiol Biotechnol 78:767–773

    CAS  PubMed  CrossRef  Google Scholar 

  • Honda K, Imura M, Okano K et al (2012) Identification of replication region of a 111-kb circular plasmid from Rhodococcus opacus B-4 by λ red recombination-based deletion analysis. Biosci Biotechnol Biochem 76:1758–1764

    CAS  PubMed  CrossRef  Google Scholar 

  • Hori K, Kobayashi A, Ikeda H et al (2009) Rhodococcus aetherivorans IAR1, a new bacterial strain synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from toluene. J Biosci Bioeng 107:145–150

    CAS  PubMed  CrossRef  Google Scholar 

  • Hülter N, Ilhan J, Wein T et al (2017) An evolutionary perspective on plasmid lifestyle modes. Curr Opin Microbiol 38:74–80

    PubMed  CrossRef  CAS  Google Scholar 

  • Irvine VA, Kulakov LA, Larkin MJ (2000) The diversity of extradiol dioxygenase (edo) genes in cresol degrading rhodococci from a creosote-contaminated site that express a wide range of degradative abilities. Antonie Van Leeuwenhoek 78:341–352

    CAS  PubMed  CrossRef  Google Scholar 

  • Iwasaki T, Miyauchi K, Masai E et al (2006) Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp. strain RHA1. Appl Environ Microbiol 72:5396–5402

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Iwasaki T, Takeda H, Miyauchi K et al (2007) Characterization of two biphenyl dioxygenases for biphenyl/PCB degradation in a PCB degrader, Rhodococcus sp. strain RHA1. Biosci Biotechnol Biochem 71:993–1002

    CAS  PubMed  CrossRef  Google Scholar 

  • Kalkus J, Dorrie C, Fischer D et al (1993) The giant linear plasmid pHG207 from Rhodococcus sp. encoding hydrogen autotrophy: characterization of the plasmid and its termini. J Gen Microbiol 139:2055–2065

    CAS  PubMed  CrossRef  Google Scholar 

  • Kalscheuer R, Arenskötter M, Steinbüchel A (1999) Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids). Appl Microbiol Biotechnol 52:508–515

    CAS  PubMed  CrossRef  Google Scholar 

  • Khairy H, Meinert C, Wübbeler JH et al (2016) Genome and proteome analysis of Rhodococcus erythropolis MI2: elucidation of the 4,4′-dithiodibutyric acid catabolism. PLoS One 11(12):e0167539. https://doi.org/10.1371/journal.pone.0167539

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Hirai K, Gunge N et al (1985) Hairpin plasmid-a novel linear DNA of perfect hairpin structure. EMBO J 4:1881–1886

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kim D, Kim YS, Kim SK et al (2002) Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl Environ Microbiol 6:3270–3278

    CrossRef  CAS  Google Scholar 

  • Kim D, Choi KY, Yoo M (2018) Biotechnological potential of Rhodococcus biodegradative pathways. J Microbiol Biotechnol 28(7):1037–1051

    CAS  PubMed  Google Scholar 

  • Konig C, Eulberg D, Groning J et al (2004) A linear megaplasmid, p1CP, carrying the genes for chlorocatechol catabolism of Rhodococcus opacus 1CP. Microbiology 150:3075–3087

    PubMed  CrossRef  CAS  Google Scholar 

  • Konishi M, Nishi S, Fukuoka T et al (2014) Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Mar Biotechnol 16:484–493

    CAS  CrossRef  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264. https://doi.org/10.1128/JB.187.18.6258-6264.2005

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kosono S, Maeda M, Fuji F et al (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl Environ Microbiol 63:3282–3285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kostichka K, Tao L, Bramucci M et al (2003) A small cryptic plasmid from Rhodococcus erythropolis: characterization and utility for gene expression. Appl Microbiol Biotechnol 62:61–68

    CAS  PubMed  CrossRef  Google Scholar 

  • Kulakov LA, Larkin MJ (2002) Genomic organization of Rhodococcus. In: Danchin A (ed) Genomics of GC-rich gram-positive bacteria. Caister Academic Press, Norfolk, pp 15–46

    Google Scholar 

  • Kulakov LA, Larkin MJ, Kulakova AN (1997) Cryptic plasmid pKA22 isolated from the naphthalene degrading derivative of Rhodococcus rhodochrous NCIMB13064. Plasmid 38:61–69

    CAS  PubMed  CrossRef  Google Scholar 

  • Kulakov LA, Chen S, Allen CC et al (2005) Web-type evolution of Rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol 71:1754–1764

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kulakova AN, Stafford TM, Larkin MJ et al (1995) Plasmid pRTL1 controlling 1-chloroalkane degradation by Rhodococcus rhodochrous NCIMB13064. Plasmid 33:208–217

    CAS  PubMed  CrossRef  Google Scholar 

  • Kwasiborski A, Mondy S, Teik-Min C et al (2015) Core genome and plasmidome of the quorum-quenching bacterium Rhodococcus erythropolis. Genetica 143:253–261

    CAS  PubMed  CrossRef  Google Scholar 

  • Laczi K, Kis A, Horváth B et al (2015) Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 99:9745–9759

    CAS  PubMed  CrossRef  Google Scholar 

  • Larkin MJ, DeMot R, Kulakov LA et al (1998) Applied aspects of Rhodococcus genetics. Antonie Van Leeuwenhoek 74:133–153

    CAS  PubMed  CrossRef  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2010) Genomes and plasmids in Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp 73–90

    CrossRef  Google Scholar 

  • LeBlanc JC, Gonçalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Letek M, González P, MacArthur I et al (2010) The genome of a pathogenic Rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6(9):e1001145. https://doi.org/10.1371/journal.pgen.1001145

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Martìnkovà L, Uhnàkovà B, Pàtek M et al (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    PubMed  CrossRef  CAS  Google Scholar 

  • Matsui T, Saeki H, Shinzato N et al (2006) Characterization of RhodococcusE. coli shuttle vector pNC9501 constructed from the cryptic plasmid of a propene-degrading bacterium. Curr Microbiol 52:445–448

    CAS  PubMed  CrossRef  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW et al (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103(42):15582–15587

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Meinhardt F, Schaffrath R, Larsen M (1997) Microbial linear plasmids. Appl Microbiol Biotechnol 47:329–336

    CAS  PubMed  CrossRef  Google Scholar 

  • Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586

    CAS  PubMed  CrossRef  Google Scholar 

  • Na K, Kuroda A, Takiguchia N (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382

    CAS  PubMed  CrossRef  Google Scholar 

  • Nakashima N, Tamura T (2004a) A novel system for expressing recombinant proteins over a wide temperature range from 4 to 35°C. Biotechnol Bioeng 86:136–148

    CAS  PubMed  CrossRef  Google Scholar 

  • Nakashima N, Tamura T (2004b) Isolation and characterization of a rolling-circle-type plasmid from Rhodococcus erythropolis and application of the plasmid to multiple-recombinant-protein expression. Appl Environ Microbiol 70:5557–5568

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • National Center for Biotechnology Information (NCBI) (2018) U.S. National Library of Medicine, Rockville Pike. www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=1827 Accessed July 2018

  • Orro A, Cappelletti M, D’Ursi P et al (2015) Genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 10(10):e0139467. https://doi.org/10.1371/journal.pone.0139467

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pathak A, Chauhan A, Blom J et al (2016) Comparative genomics and metabolic analysis reveals peculiar characteristics of Rhodococcus opacus strain M213 particularly for naphthalene degradation. PLoS One 17:1–32

    Google Scholar 

  • Patrauchan MA, Florizone C, Dosanjh M et al (2005) Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. J Bacteriol 187:4050–4063

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Patrauchan MA, Florizone C, Eapen S et al (2008) Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J Bacteriol 190(1):37–47

    CAS  PubMed  CrossRef  Google Scholar 

  • Patrauchan MA, Miyazawa D, LeBlanc JC et al (2012) Proteomic analysis of survival of Rhodococcus jostii RHA1 during carbon starvation. Appl Environ Microbiol 78(18):6714–6725

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pérez-Pérez JM, Candela H, Micol JL (2009) Understanding synergy in genetic interactions. Trends Genet 8:368–376

    CrossRef  CAS  Google Scholar 

  • Petrusma M, Hessels G, Dijkhuizen L et al (2011) Multiplicity of 3-ketosteroid-9α-hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. J Bacteriol 193(15):3931–3940. https://doi.org/10.1128/JB.00274-11

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Presentato A, Piacenza E, Anikovskiy M et al (2016) Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Factories 15:204. https://doi.org/10.1186/s12934-016-0602-8

    CAS  CrossRef  Google Scholar 

  • Presentato A, Cappelletti M, Sansone A et al (2018a) Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources. Front Microbiol 9:672. https://doi.org/10.3389/fmicb.2018.00672

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Presentato A, Piacenza E, Anikovskiy M et al (2018b) Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnol 41:1–8

    CAS  CrossRef  Google Scholar 

  • Presentato A, Piacenza E, Darbandi A et al (2018c) Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Sci Rep 8:3923. https://doi.org/10.1038/s41598-018-22320-x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Priefert H, O’Brien XM, Lessard PA et al (2004) Indene bioconversion by a toluene inducible dioxygenase of Rhodococcus sp. I24. Appl Microbiol Biotechnol 65:168–176

    CAS  PubMed  CrossRef  Google Scholar 

  • Puglisi E, Cahill MJ, Lessard PA et al (2010) Transcriptional response of Rhodococcus aetherivorans I24 to polychlorinated biphenyl-contaminated sediments. Microb Ecol 60(3):505–515. https://doi.org/10.1007/s00248-010-9650-5

    CAS  CrossRef  PubMed  Google Scholar 

  • Qu J, Miao L-L, Liu Y et al (2015) Complete genome sequence of Rhodococcus sp. Strain IcdP1 shows diverse catabolic potential. Genome Announc 3(4):e00711-15. https://doi.org/10.1128/genomeA.00711-15

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Radeck J, Kraft K, Bartels J (2013) The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J Biol Eng 7:29

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Redenbach M, Altenbuchner J (2002) Why do some bacteria have linear chromosomes and plasmids. BIOspektrum 8:158–163

    CAS  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rodrigues JLM, Maltseva OV, Tsoi TV et al (2001) Development of a Rhodococcus recombinant strain for degradation of products from anaerobic dechlorination of PCBs. Environ Sci Technol 35:663–668

    CAS  PubMed  CrossRef  Google Scholar 

  • Sallam KI, Mitani Y, Tamura T (2006) Construction of random transposition mutagenesis system in Rhodococcus erythropolis using IS1415. J Biotechnol 121:13–22

    CAS  PubMed  CrossRef  Google Scholar 

  • Sameshima Y, Honda K, Kato J et al (2008) Expression of Rhodococcus opacus alkB genes in anhydrous organic solvents. J Biosci Bioeng 106:199–203

    CAS  CrossRef  PubMed  Google Scholar 

  • Sangal V, Jones AL, Goodfellow M et al (2014) Comparative genomic analyses reveal a lack of a substantial signature of host adaptation in Rhodococcus equi (“Prescottella equi”). Pathog Dis 71:352–356

    CAS  PubMed  CrossRef  Google Scholar 

  • Sekine M, Tanikawa S, Omata S et al (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346

    CAS  PubMed  CrossRef  Google Scholar 

  • Sekizaki T, Tanoue T, Osaki M (1998) Improved electroporation of Rhodococcus equi. J Vet Med Sci 60:277–279

    CAS  PubMed  CrossRef  Google Scholar 

  • Shao Z, Dick WA, Behki RM (1995) An improved Escherichia coli – Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation. Lett Appl Microbiol 21:261–266

    CAS  PubMed  CrossRef  Google Scholar 

  • Sheng HM, Gao HS, Xue LG et al (2011) Analysis of the composition and characteristics of culturable endophytic bacteria within subnival plants of the Tianshan Mountains, northwestern China. Curr Microbiol 62:923–932

    CAS  PubMed  CrossRef  Google Scholar 

  • Shevtsov A, Tarlykov P, Zholdybayeva E et al (2013) Draft genome sequence of Rhodococcus erythropolis DN1, a crude oil biodegrader. Genome Announc 1:e00846–e00813. https://doi.org/10.1128/genomeA.00846-13

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Shimizu S, Kobayashi H, Masai E et al (2001) Characterization of the 450-kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl Environ Microbiol 67:2021–2028

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Singer ME, Finnerty WR (1988) Construction of an Escherichia coliRhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. J Bacteriol 170:638–645

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Swain K, Casabon I, Eltis LD et al (2012) Two transporters essential for the reassimilation of novel cholate metabolites by Rhodococcus jostii RHA1. J Bacteriol 194(24):6720–6727

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Szőköl J, Rucká L, Šimčíková M et al (2014) Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl Microbiol Biotechnol 98:8267–8279

    PubMed  CrossRef  CAS  Google Scholar 

  • Taguchi K, Motoyama M, Kudo T (2004) Multiplicity of 2, 3-dihydroxybiphenyl dioxygenase genes in the Gram-positive polychlorinated biphenyl degrading bacterium Rhodococcus rhodochrous K37. Biosci Biotechnol Biochem 68:787–795

    CAS  PubMed  CrossRef  Google Scholar 

  • Taguchi K, Motoyama M, Iida T et al (2007) Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of rhodococci. Biosci Biotechnol Biochem 71:1136–1144

    CAS  PubMed  CrossRef  Google Scholar 

  • Tajparast M, Frigon D (2015) Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition. BMC Syst Biol 9:43. https://doi.org/10.1186/s12918-015-0190-y

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Tajparast M, Frigon D, Virolle MJ (2018) Predicting the accumulation of storage compounds by Rhodococcus jostii RHA1 in the feast-famine growth cycles using genome-scale flux balance analysis. PLoS One 13:e0191835. https://doi.org/10.1371/journal.pone.0191835

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Takeda H, Shimodaira J, Yukawa K et al (2010) Dual two-component regulatory systems are involved in aromatic compound degradation in a polychlorinated-biphenyl degrader, Rhodococcus jostii RHA1. J Bacteriol 192:4741–4751

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Takei D, Washio K, Morikawa M (2008) Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnol Lett 30:1447–1452

    CAS  PubMed  CrossRef  Google Scholar 

  • Taketani RG, Zucchi TD, Soares de Melo I et al (2013) Whole-genome shotgun sequencing of Rhodococcus erythropolis strain P27, a highly radiation-resistant actinomycete from Antarctica. Genome Announc 1(5):e00763–e00713. https://doi.org/10.1128/genomeA.00763-13

    CrossRef  Google Scholar 

  • Táncsics A, Benedek T, Szoboszlay S et al (2015) The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus. Syst Appl Microbiol 38:1–7

    PubMed  CrossRef  CAS  Google Scholar 

  • Tao F, Zhao P, Li Q et al (2011) Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential. J Bacteriol 193:6422–6423

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tomás-Gallardo L, Canosa I, Santero E et al (2006) Proteomic and transcriptional characterization of aromatic degradation pathways in Rhodococcus sp. strain TFB. Proteomics 6:S119–S132. https://doi.org/10.1002/pmic.200500422

    CrossRef  PubMed  Google Scholar 

  • Treadway SL, Yanagimachi KS, Lankenau E (1999) Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl Microbiol Biotechnol 51:786–793

    CAS  PubMed  CrossRef  Google Scholar 

  • Valero-Rello A, Hapeshi A, Anastasi E et al (2015) An invertron-like linear plasmid mediates intracellular survival and virulence in bovine isolates of Rhodococcus equi. Infect Immun 83:2725–2737. https://doi.org/10.1128/IAI.00376-15

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Van Beilen JB, Smits THM, Whyte LG et al (2002) Alkane hydroxylase homologues in gram-positive strains. Environ Microbiol 4:676–682

    PubMed  CrossRef  Google Scholar 

  • Van der Geize, Dijkhuize L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    PubMed  CrossRef  CAS  Google Scholar 

  • Van der Geize R, Hessels GI, van Gerwen R (2001) Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counters electable marker. FEMS Microbiol Lett 205:197–202

    PubMed  CrossRef  Google Scholar 

  • Van der Geize R, Yam K, Heuser T et al (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104:1947–1952

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Van der Geize R, de Jong W, Hessels GI et al (2008) A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic Acids Res 36:e151

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Venkataraman H, Evelien MP, Rosłoniec KZ et al (2015) Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme. Appl Microbiol Biotechnol 99:4713–4721

    CAS  PubMed  CrossRef  Google Scholar 

  • Ventura M, Canchaya C, Tauch A et al (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vick J, Johnson E, Choudhary S et al (2011) Optimized compatible set of BioBrick™ vectors for metabolic pathway engineering. Appl Microbiol Biotechnol 92:1275–1286

    CAS  PubMed  CrossRef  Google Scholar 

  • Villalba MS, Hernandéz MA, Silva RA et al (2013) Genome sequences of triacylglycerol metabolism in Rhodococcus as a platform for comparative genomics. J Mol Biochem 2:94–105

    CAS  Google Scholar 

  • Volff JN, Altenbuchner J (2000) A new beginning with new ends: linearization of circular chromosomes during bacterial evolution. FEMS Microbiol Lett 186:143–150. https://doi.org/10.1111/j.1574-6968.2000.tb09095.x

    CAS  CrossRef  PubMed  Google Scholar 

  • Voss I, Steinbuchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    CAS  CrossRef  PubMed  Google Scholar 

  • Warren R, Hsiao WW, Kudo H et al (2004) Functional characterization of a catabolic plasmid from polychlorinated-biphenyl degrading Rhodococcus sp. strain RHA1. J Bacteriol 186:7783–7795

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Watcharakul S, Röther W, Birke J (2016) Biochemical and spectroscopic characterization of purified Latex Clearing Protein (Lcp) from newly isolated rubber degrading Rhodococcus rhodochrous strain RPK1 reveals novel properties of Lcp. BMC Microbiol 16:92. https://doi.org/10.1186/s12866-016-0703-x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Whyte LG, Smits THM, Labbe’ D et al (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Xiong X, Wang X, Chen S (2012) Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl Environ Microbiol 78(16):5483–5491. https://doi.org/10.1128/AEM.08022-11

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Xiong X, Lian J, Yu X et al (2016) Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production. J Ind Microbiol Biotechnol 43:1551–1560

    CAS  PubMed  CrossRef  Google Scholar 

  • Xu JL, He J, Wang ZC et al (2007) Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. Int J Syst Evol Microbiol 57:2754–2757

    CAS  PubMed  CrossRef  Google Scholar 

  • Zampolli J, Collina E, Lasagni M et al (2014) Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. AMB Express 4:73

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Zhang J (2012) Genetic redundancies and their evolutionary maintenance. Evol Syst Biol 751:279–300

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Cappelletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Cappelletti, M., Zampolli, J., Di Gennaro, P., Zannoni, D. (2019). Genomics of Rhodococcus . In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-11461-9_2

Download citation