Adhami E, Aghaei SS, Zolfaghari MR (2017) Evaluation of heavy metals resistance in biofilm cells of native Rhodococcus spp. isolated from soil. Arch Hyg Sci 6:235–243
CrossRef
Google Scholar
Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828. https://doi.org/10.1088/0957-4484/14/7/323
CAS
CrossRef
Google Scholar
Ali H, Khanb E, Sajad AM (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
CAS
CrossRef
PubMed
Google Scholar
Alvarez HM, Steinbüchel A (2010) Physiology, biochemistry and molecular biology of triacylglycerol accumulation by Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus, Microbiology monographs, vol 16. Springer, Heidelberg, pp 263–290. https://doi.org/10.1007/978-3-642-12937-7_10
CrossRef
Google Scholar
American Chemistry Society (ACS) NANO(2011) Green nanotechnology challenges and opportunities. http://greennano.org/sites/greennano2.uoregon.edu/files/GCI_WP_GN10.pdf
Ankamwar B, Chaudhary M, Sastry M (2005) Gold nanoparticles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Met Org Nano Met Chem 35:19–26. https://doi.org/10.1081/SIM-200047527
CAS
CrossRef
Google Scholar
Appenzeller T (1991) The man who dared to think small. Science 254:1300–1300. https://doi.org/10.1126/science.254.5036.1300
CAS
CrossRef
PubMed
Google Scholar
Araki K, Tanaka T (1972) Piezoelectric and elastic properties of single crystalline Se-Te alloys. Appl Phys Expr 11:472–479. https://doi.org/10.1143/JJAP.11.472
CAS
CrossRef
Google Scholar
Avery SV, Codd GA, Gadd GM (1991) Cesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC 6803. J Gen Microbiol 137:405–413. https://doi.org/10.1099/00221287-137-2-405
CAS
CrossRef
Google Scholar
Avery SV, Codd GA, Gadd GM (1992) Replacement of cellular potassium by cesium in Chlorella emersonii: differential sensitivity of photoautotrophic and chemoheterotrophic growth. J Gen Microbiol 138:69–76. https://doi.org/10.1099/00221287-138-169
CAS
CrossRef
Google Scholar
Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512. https://doi.org/10.1007/s00204-008-0313-y
CAS
CrossRef
PubMed
Google Scholar
Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164. https://doi.org/10.1016/j.colsurfb.2005.11.026
CAS
CrossRef
PubMed
Google Scholar
Boguta P, Sokołowska Z (2016) Interactions of Zn(II) ions with humic acids isolated from various type of soils. Effect of pH, Zn concentrations and humic acids chemical properties. PLoS One 11:1–20. https://doi.org/10.1371/journal.pone.0153626
CAS
CrossRef
Google Scholar
Botero AEC, Torem ML, de Mesquita LMS (2007) Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite. Miner Eng 20:1026–1032. https://doi.org/10.1016/j.mineng.2007.03.017
CAS
CrossRef
Google Scholar
Brooks AN, Turkarslan S, Beer KD, Lo FY, Baliga NS (2011) Adaptation of cells to new environments. Wiley Interdiscip Rev Syst Biol Med 3:544–561. https://doi.org/10.1002/wsbm.136
CAS
CrossRef
PubMed
Google Scholar
Bueno BYM, Torem ML, Molina F, de Mesquita LMS (2008) Biosorption of lead (II), chromium (III) and copper (II) by R. opacus: equilibrium and kinetic studies. Miner Eng 21:65–75. https://doi.org/10.1016/j.mineng.2007.08.013
CAS
CrossRef
Google Scholar
Cao G (2004a) Chapter 1: Introduction. In: Cao G (ed) Nanostructures & nanomaterials, synthesis, properties and applications. Imperial College Press, London, pp 1–14
CrossRef
Google Scholar
Cao G (2004b) Chapter 2, Physical chemistry of solid surfaces. In: Cao G (ed) Nanostructures & nanomaterials, synthesis, properties and applications. Imperial College, London, pp 15–48
CrossRef
Google Scholar
Cappelletti M, Fedi S, Zampolli J, Di Canito A, D’ursi P, Orro A, Viti C, Milanesi L, Zannoni D, Di Gennaro P (2016) Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 167:766–773. https://doi.org/10.1016/j.resmic.2016.06.008
CAS
CrossRef
PubMed
Google Scholar
Cayllahua JEB, Torem ML (2010) Biosorption of aluminum ions onto Rhodococcus opacus from wastewaters. Chem Eng J 161:1–8. https://doi.org/10.1016/j.cej.2010.03.025
CAS
CrossRef
Google Scholar
Centers for Disease Control and Prevention National Institute for Occupational Safety and Health (CDC) (2014) Current strategies for engineering controls in nanomaterial production and downstream handling processes. https://www.cdc.gov/niosh/docs/2014-102/pdfs/2014-102.pdf
Chakraborty J, Dash AR, Das S (2017) Metals and their toxic effects. An introduction to noxious elements. In: Das S, Dash HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC, Boca Raton, FL, pp 3–17. ISBN: 9781498762434
CrossRef
Google Scholar
Chang LW, Magos L, Suzuki T (1996) Toxicology of metals. CRC, Boca Raton, FL. ISBN: 9780873718035
Google Scholar
Cole ST, Broch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeir K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. https://doi.org/10.1038/31159
CAS
CrossRef
PubMed
Google Scholar
Comte S, Guibaud G, Baudu M (2005) Relation between extraction protocols of the activated sludge extracellular polymeric substances (EPS) and EPS complexation properties. Part I. Comparison of the efficiency of eight EPS extraction properties. Enzyme Microb Technol 38:237–245. https://doi.org/10.1016/j.enzymictec.2005.06.016
CrossRef
Google Scholar
Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002
CAS
CrossRef
Google Scholar
Degen O, Kobayashi M, Shimizu S, Eitinger T (1999) Selective transport of divalent cations by transition metal permeases: the Alcaligenes eutrophus HoxN and the Rhodococcus rhodochrous NhlF. Arch Microbiol 171:139–145. https://doi.org/10.1007/s002030050
CAS
CrossRef
PubMed
Google Scholar
Dobrowolski R, Szcześ A, Czemierska M, Jarosz-Wikołazka A (2017) Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour Technol 225:113–120. https://doi.org/10.1016/j.biortech.2016.11.040
CAS
CrossRef
PubMed
Google Scholar
Doyle RJ, Matthews TH, Streips UN (1980) Chemical basis for the selectivity of metal ions by the Bacillus subtilis wall. J Bacteriol 143:471–480
CAS
PubMed
PubMed Central
Google Scholar
Duraipandiyana V, Sasi AH, Islam VHI, Valanarasu M, Ignacimuthu S (2010) Antimicrobial properties of actinomycetes from the soil of Himalaya. J Med Mycol 20:15–20. https://doi.org/10.1016/j.mycmed.2009.11.002
CrossRef
Google Scholar
Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692. https://doi.org/10.1007/s002530051
CAS
CrossRef
Google Scholar
Eitinger T, Friedrich B (1997) Microbial nickel transport and incorporation into hydrogenases. In: Winkelmann G, Carrano CJ (eds) Transition metals in microbial metabolism. Harwood, Amsterdam, pp 235–256
Google Scholar
Eitinger T, Wolfram L, Degen O, Anthon C (1997) A Ni2+ binding motif is the basis of high affinity transport of the Alcaligenes eutrophus nickel permease. J Biol Chem 272:17139–17144. https://doi.org/10.1074/jbc.272.27.17139
CAS
CrossRef
PubMed
Google Scholar
Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford. https://doi.org/10.1016/0269-7491(91)90124-F
CrossRef
Google Scholar
Figueira EMAP, Lima AIG, Pereira SIA (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14. https://doi.org/10.1139/w04-101
CAS
CrossRef
PubMed
Google Scholar
Fleck LC, Bicca FC, Ayub MAZ (2000) Physiological aspects of hydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites. Biotechnol Lett 22:285–289. https://doi.org/10.1023/A:1005607112566
CAS
CrossRef
Google Scholar
Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1990) Remobilization of toxic heavy metals absorbed to wall-clay composites. Appl Environ Microbiol 56:3191–3209
CAS
PubMed
PubMed Central
Google Scholar
Forootanfar H, Zare B, Fasihi-Bam H, Amirpour-Rostami S, America A, Shakibaie M, Nami MT (2014) Biosynthesis and characterization of selenium nanoparticles produced by terrestrial actinomycete Streptomyces microflavus strain FSHJ31. RRJMB 3:47–53. e-ISSN: 2320-3528
Google Scholar
Freire-Nordi CS, Vieira AAH, Nakaie CR, Nascimento OR (2005) Effect of polysaccharide capsule of the microalgae Staurastrum iversenii var. americanum on diffusion of charged and uncharged molecules, using EPR technique. Braz J Phys 36:75–82. https://doi.org/10.1590/S0103-97332006000100013
CrossRef
Google Scholar
Fu C, Javedan S, Moshiri F, Maier RJ (1994) Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme. Proc Natl Acad Sci USA 91:5099–5103. https://doi.org/10.1073/pnas.91.11.5099
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fulkerson JF Jr, Garner RM, Mobley HLT (1998) Conserved motifs and residues in the NixA protein of Helicobacter pylori are critical for the high affinity transport of nickel ions. J Biol Chem 273:235–241. https://doi.org/10.1074/jbc.273.1.235
CAS
CrossRef
PubMed
Google Scholar
Gadd GM (1992a) Microbial control of heavy metal pollution. In: Fry J, Gadd GM, Herbert RA, Jones CW, Watson-Craik IA (eds) Forty-eighth symposium of the society for general microbiology. Cambridge Univ. Press, The University of Cardiff, Cardiff, pp 59–88
Google Scholar
Gadd GM (1992b) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204. https://doi.org/10.1111/j.1574-6968.1992.tb14040.x
CAS
CrossRef
PubMed
Google Scholar
Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. https://doi.org/10.1099/mic.0.037143-0
CAS
CrossRef
PubMed
Google Scholar
Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359. https://doi.org/10.1016/0167-7799(93)90158-6
CAS
CrossRef
PubMed
Google Scholar
Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66
Google Scholar
Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256:1425–1427. https://doi.org/10.1126/science.256.5062.1425
CAS
CrossRef
PubMed
Google Scholar
Guibaud G, Bordas F, Saaid A, D’abzac P, Hullebusch EV (2008) Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloid Surf B Biointerfaces 63:48–54. https://doi.org/10.1016/j.colsurfb.2007.11.002
CAS
CrossRef
PubMed
Google Scholar
Gupta P, Diwan B (2017) Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71. https://doi.org/10.1016/j.btre.2016.12.006
CrossRef
Google Scholar
Hamelink J, Landrum PF, Bergman H, Benson WH (1994) Bioavailability: physical, chemical and biological interactions. CRC, Boca Raton, FL. ISBN: 9781566700863
Google Scholar
Harrison JJ, Ceri H, Stremick CA, Turner RJ (2004) Biofilm susceptibility to metal toxicity. Environ Microbiol 6:1220–1227. https://doi.org/10.1111/j.1462-2920.2004.00656.x
CAS
CrossRef
PubMed
Google Scholar
Harrison JJ, Turner RJ, Marques LLR, Ceri H (2005) Biofilms: a new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. Am Sci (6):508–515
CrossRef
Google Scholar
Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938. https://doi.org/10.1038/nrmicro1774
CAS
CrossRef
PubMed
Google Scholar
Hausinger RP (1997) Metallocenter assembly in nickel-containing enzymes. J Biol Inorg Chem 2:279–286. https://doi.org/10.1007/s007750050
CAS
CrossRef
Google Scholar
Horikoshi S, Serpone N (2013) Chapter 1, General introduction to nanoparticles. In: Horikoshi S, Serpone N (eds) Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley-VCH, Weinheim, pp 1–24
CrossRef
Google Scholar
Jasper P (1978) Potassium transport system of Rhodopseudomonas capsulate. J Bacteriol 133:1314–1322
CAS
PubMed
PubMed Central
Google Scholar
Jixian Y, Wei W, Shanshan P, Fang M, Ang L, Dan W, Jie X (2015) Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1. Bioresour Technol 196:533–539. https://doi.org/10.1016/j.biortech.2015.08.011
CAS
CrossRef
Google Scholar
Kar S, Maity JP, Jean JS, Liu CC, Nath B, Lee YC, Bundschuh J, Chen CY, Li Z (2011) Role of organic matter and humic substances in the binding and mobility of arsenic in a Gangetic aquifer. J Environ Sci Health A 46:1231–1238. https://doi.org/10.1080/10934529.2011.598796
CAS
CrossRef
Google Scholar
Koch AL (1990) Growth and form of the bacterial cell wall. Am Sci 78:327–341
Google Scholar
Komeda H, Kobayashi M, Shimizu S (1997) A novel transporter involved in cobalt uptake. Proc Natl Acad Sci USA 94:36–41. https://doi.org/10.1073/pnas.94.1.36
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S (2014) Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol B 140:194–204. https://doi.org/10.1016/j.jphotobiol.2014.08.001
CAS
CrossRef
PubMed
Google Scholar
Lamelas C, Benedetti M, Wilkinson KJ, Slaveykova VI (2006) Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. Chemosphere 65:1362–1370. https://doi.org/10.1016/j.chemosphere.2006.04.021
CAS
CrossRef
PubMed
Google Scholar
Lau TC, Wu XA, Chua H, Qian PY, Wong PK (2005) Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Water Sci Technol 52:63–68
CAS
CrossRef
Google Scholar
Ledin M (2000) Accumulation of metals by microorganisms-processes and importance for soil systems. Earth Sci Rev 51:1–31. https://doi.org/10.1016/S0012-8252(00)00008-8
CAS
CrossRef
Google Scholar
Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. https://doi.org/10.1038/nrmicro3028
CAS
CrossRef
PubMed
Google Scholar
Li X, Xu H, Chen ZS, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. https://doi.org/10.1155/2011/270974. Article ID 270974
Google Scholar
Liu H, Fang HH (2002) Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng 30:806–811. https://doi.org/10.1002/bit.10432
CAS
CrossRef
Google Scholar
Manimaran M, Kannabiran K (2017) Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges. Lett Appl Microbiol 64:401–408. https://doi.org/10.1111/lam.12730
CAS
CrossRef
PubMed
Google Scholar
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2016) Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review. Crit Rev Microbiol 42:209–221. https://doi.org/10.3109/104084X.2014.917069
CAS
CrossRef
PubMed
Google Scholar
Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177. https://doi.org/10.1016/j.envint.2008.07.018
CAS
CrossRef
PubMed
Google Scholar
Merroun ML, Ben Chekroun K, Arias JM, González-Muñoz MT (2003) Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccharide observation. Chemosphere 52:113–120. https://doi.org/10.1016/S0045-6535(03)00220-0
CAS
CrossRef
PubMed
Google Scholar
Mirimanoff N, Wilkinson KJ (2000) Regulation of Zn accumulation by a freshwater Gram-positive bacterium (Rhodococcus opacus). Environ Sci Technol 34:616–622. https://doi.org/10.1021/es990744g
CAS
CrossRef
Google Scholar
Mowll JL, Gadd GM (1984) Cadmium uptake by Aureobasidium pullulans. J Gen Microbiol 130:279–284. https://doi.org/10.1099/00221287-130-2-279
CAS
CrossRef
Google Scholar
Newton GL, Arnold K, Price MS, Sherrill C, delCardayre SB, Aharonowitz Y, Cohen G, Davies J, Fahey RC, Davis C (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995. https://doi.org/10.1128/jb.178.7.1990-1995.1996
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Nies D (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750. https://doi.org/10.1007/s002530051
CAS
CrossRef
PubMed
Google Scholar
Orro A, Cappelletti M, D’Ursi P, Milanesi L, Di Canito A, Zampolli J, Collina E, Decorosi F, Viti C, Fedi S, Presentato A, Zannoni D, Di Gennaro P (2015) Genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 10(10):e0139467. https://doi.org/10.1371/journal.pone.0139467
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 72:92–94. https://doi.org/10.1016/j.matlet.2011.12.109
CAS
CrossRef
Google Scholar
Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:5. https://doi.org/10.4172/2157-7439.1000233
CAS
CrossRef
Google Scholar
Paperi R, Micheletti E, De Philips R (2006) Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. J Appl Microbiol 101:1351–1356. https://doi.org/10.1111/j.1365-2672.2006.03021.x
CAS
CrossRef
PubMed
Google Scholar
Park JH, Kim BS, Chon CM (2018) Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation. Chemosphere 191:245–252. https://doi.org/10.1016/j.chemosphere.2017.10.050
CAS
CrossRef
PubMed
Google Scholar
Pau RN, Klipp W, Leimkühler S (1997) Molybdenum transport, processing and gene regulation. In: Winkelmann G, Carrano CJ (eds) Transition metals in microbial metabolism. Harwood, Amsterdam, pp 217–234
Google Scholar
Pavel VL, Sobariu DL, Tudorache-Fertu ID, Statescu F, Gaverilescu M (2013) Symbiosis in the environment biomanagement of soils contaminated with heavy metals. Eur J Sci Theol 9:211–224
Google Scholar
Perelomov LV, Sarkarb B, Sizovad OI, Chilachava KB, Shvikina AY, Perelomova IV, Atroshchenkoa YM (2018) Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species. Ecotoxicol Environ Saf 151:178–183. https://doi.org/10.1016/j.ecoenv.2018.01.018
CAS
CrossRef
PubMed
Google Scholar
Perminova IV, Hatfield K (2005) Remediation chemistry of humic substances: theory and implications for technology. In: Perminova IV, Hatfield K, Hertcorn N (eds) Use of humic substances to remediate polluted environments: from theory to practice. Springer, Dordrecht, pp 3–36. https://doi.org/10.1007/1-4020-3252-8_1
CrossRef
Google Scholar
Perminova IV, Kulikova NA, Zhilin D, Grechischeva M, Kovalevskii DV, Lebedeva GF, Matorin DN, Venediktov PS, Konstantinov AI, Kholodov VA, Petrosyan VS, (2006) Mediating effects of humic substances in the contaminated environments. Concepts, results, and prospects. In: Twardowska I, Allen HE, Haggblom MH, Stefaniak S (Eds) Viable methods of soils and water pollution monitoring, protection and remediation, Krakow, Poland, pp 249–273. https://doi.org/10.1007/978-1-4020-4728-2_17
Phillips DJ, Rainbow PS (2013) Biomonitoring of trace aquatic contaminants, vol 37. Springer, New York. ISBN: 978-94-011-2122-4
Google Scholar
Piacenza E, Presentato A, Turner RJ (2018) Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures. Crit Rev Biotechnol 25:1–20. https://doi.org/10.1080/07388551.2018.1440525
CAS
CrossRef
Google Scholar
Plette ACC, van Riemsdijk WH, Benedetti MF, van der Wal A (1995) pH dependent charging behavior of isolated cell walls of a Gram-positive soil bacterium. J Colloid Interface Sci. 173:354–363. https://doi.org/10.1006/jcis.1995.1335
CAS
CrossRef
Google Scholar
Plette ACC, Benedetti MF, Vanriemsdijk WH (1996) Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a Gram-positive soil bacterium. Environ Sci Technol 30:1902–1910. https://doi.org/10.1021/es950568l
CAS
CrossRef
Google Scholar
Pogorelova TE, Ryabchenko LE, Sunzow NI, Yanenko AS (1996) Cobalt-dependent transcription of nitrile hydratase gene in Rhodococcus rhodochrous M8. FEMS Microbiol Lett 144:191–195. https://doi.org/10.1016/0378-1097(96)00361-8
CAS
CrossRef
Google Scholar
Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2016) Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Fact 15:204. https://doi.org/10.1186/s12934-016-0602-8
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Presentato A, Cappelletti M, Sansone A, Ferreri C, Piacenza E, Demeter MA, Crognale S, Petruccioli M, Milazzo G, Fedi S, Steinbüchel A, Turner RJ, Zannoni D (2018a) Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the only carbon and energy sources. Front Microbiol 9:672. https://doi.org/10.3389/fmicb.2018.00672
CrossRef
PubMed
PubMed Central
Google Scholar
Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018b) Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnol 41:1–8. https://doi.org/10.1016/j.nbt.2017.11.02
CAS
CrossRef
Google Scholar
Presentato A, Piacenza E, Darbandi A, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018c) Assembly growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Sci Rep. https://doi.org/10.1038/s41598-018-22320-x
Rao CNR, Muller A, Cheetham AK (2004) Chapter 1, Nanomaterials. In: Rao CNR, Muller A, Cheetham AK (eds) The chemistry of nanomaterials: synthesis, properties and applications. WILEY-VCH, Weinheim, pp 1–11
CrossRef
Google Scholar
Rhoads DB, Epstein W (1977) Energy coupling to net K+ transport in Escherichia coli K-12. J Biol Chem 252:1394–1401
CAS
PubMed
Google Scholar
Rodrigues A, Brito A, Janknecht P, Proenca MF, Nogueira R (2009) Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration. J Environ Monit 11:377–382. https://doi.org/10.1039/B811942B
CAS
CrossRef
PubMed
Google Scholar
Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235. https://doi.org/10.1016/S0043-1354(03)00418-4
CAS
CrossRef
PubMed
Google Scholar
Sharma SK, Goloubinoff P, Christen P (2011) Non-native proteins as newly identified targets of heavy metals and metalloids. In: Bánfalvi G (ed) Cellular effects of heavy metals. Springer, Heidelberg, pp 263–274. https://doi.org/10.1007/978-94-007-0428-2_12
CrossRef
Google Scholar
Sheng PX, Tan LH, Chen JP, Ting YP (2004) Biosorption performance of two brown marine algae for removal of chromium and cadmium. J Disper Sci Technol 25:679–686. https://doi.org/10.1081/DIS-200027327
CAS
CrossRef
Google Scholar
Smith RL, Maguire ME (1998) Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol 28:217–226. https://doi.org/10.1046/j.1365-2958.1998.00810.x
CAS
CrossRef
PubMed
Google Scholar
Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84. https://doi.org/10.1007/s00449-008-0224-6
CAS
CrossRef
PubMed
Google Scholar
Stillman MJ (1995) Metallothioneins. Coord Chem Rev 144:461–571. https://doi.org/10.1016/0010-8545(95)01173-M
CAS
CrossRef
Google Scholar
Stratton H, Brooks P, Griffiths P, Seviour R (2002) Cell surface hydrophobicity and mycolic acid composition of Rhodococcus strains isolated from activated sludge foam. J Ind Microbiol Biotechnol 28:264–267. https://doi.org/10.1038/sj/jim/7000241
CAS
CrossRef
PubMed
Google Scholar
Strong PJ, Burgess JE (2008) Treatment methods for winerelated and distillery wastewaters: a review. Bioremediat J 12:70–87. https://doi.org/10.1080/10889860802060063
CAS
CrossRef
Google Scholar
Subbaiya R, Preetha L, Gayathril S, Swarnalatha WA, Selvam MM (2014) Synthesis and characterization of silver nanoparticles from Rhodococcus-2891 and its antitumor activity against lung cancer cell line (A549). In: International conference on science, engineering and management research (ICSEMR 2014), ISBN: 978-1-4799-7613-3
Google Scholar
Suchand Sandeep CS, Samal AK, Pradeep T, Philip R (2010) Optical limiting properties of Te and Ag2Te nanowires. Chem Phys Lett 485:326–330. https://doi.org/10.1016/j.cplett.2009.12.065
CAS
CrossRef
Google Scholar
Sunitha A, Isaac RSR, Geo S, Sornalekshmi S, Rose A, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed Eng 5:39–45. https://doi.org/10.5101/nbe.v5i1.p39-45
CAS
CrossRef
Google Scholar
Suresh K, Prabagaran SR, Sengupta S, Shivaji S (2004) Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. J Syst Evol Microbiol 54:1369–1375. https://doi.org/10.1099/ijs.0.03047-0
CAS
CrossRef
Google Scholar
Tan Y, Yao R, Wang R, Wang D, Wang G, Zheng S (2016) Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Microb Cell Fact 15:157. https://doi.org/10.1186/s12934-016-0554-z
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Tangney P, Fahy S (2002) Density-functional theory approach to ultrafast laser excitation of semiconductors: application to the A1 phonon in tellurium. Phys Rev B 14:279. https://doi.org/10.1103/PhysRevB.65.054302
CAS
CrossRef
Google Scholar
Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115. https://doi.org/10.1016/S0966-842X(99)01454-7
CAS
CrossRef
PubMed
Google Scholar
Tchounwou P, Newsome C, Williams J, Glass K (2008) Copper-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells. Metal Ions Biol Med 10:285–290
Google Scholar
Tomioka N, Uchiyama H, Yagi O (1994) Cesium accumulation and growth characteristics of Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402. Appl Environ Microbiol 60:2227–2231
CAS
PubMed
PubMed Central
Google Scholar
Turner RJ (2001) Tellurite toxicity and resistance in Gram-negative bacteria. Recent Res Dev Microbiol 5:69–77
CAS
Google Scholar
Turner RJ, Weiner JH, Taylor DE (1999) Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology 145:2549–2557. https://doi.org/10.1099/00221287-145-9-2549
CAS
CrossRef
PubMed
Google Scholar
Turner RJ, Borghese R, Zannoni D (2012) Microbial processing of tellurium as a tool in biotechnology. Biotechnol Adv 30:954–963. https://doi.org/10.1016/j.biotechadv.2011.08.018
CAS
CrossRef
PubMed
Google Scholar
Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 4:327–338. https://doi.org/10.1111/j.1574-6976.2002.tb0018.x
CrossRef
Google Scholar
van der Wal A, Norde W, Zehnder AJB, Lyklema J (1997) Determination of total charge in the cell walls of Gram-positive bacteria. J Colloids Surf B Biointerfaces 9:81–100. https://doi.org/10.1016/S0927-7765(96)01340-9
CrossRef
Google Scholar
Vasquez TGP, Botero AEC, de Mesquita LMS, Torem ML (2007) Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Miner Eng 20:939–944. https://doi.org/10.1016/j.mineng.2007.03.014
CAS
CrossRef
Google Scholar
Vela-Cano M, Castellano-Hinojosa A, Vivas AF, Toledo MVM (2014) Effect of heavy metals on the growth of bacteria isolated from sewage sludge compost tea. Adv Microbial 4:644–655. https://doi.org/10.4236/aim.2014.410070
CAS
CrossRef
Google Scholar
Volesky B (1990) Biosorption and biosorbents. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton, FL, pp 3–6. ISBN: 9780849349171
Google Scholar
Wei X, Fang L, Cai P, Huang Q, Chen H, Liang W, Rong X (2011) Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ Pollut 159:1369–1374. https://doi.org/10.1016/j.envpol.2011.01.006
CAS
CrossRef
PubMed
Google Scholar
Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 4:781–812. https://doi.org/10.1016/0734-9750(93)9000-6
CrossRef
Google Scholar
Wolfram L, Friedrich B, Eitinger T (1995) The Alcaligenes eutrophus protein HoxN mediates nickel transport in Escherichia coli. J Bacteriol 177:1840–1843. https://doi.org/10.1128/jb.177.7.1840-1843.1995
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Xue HB, Stumm W, Sigg L (1988) The binding of heavy metals to algal surfaces. Water Res 22:917–626. https://doi.org/10.1016/0043-1354(88)90029-2
CAS
CrossRef
Google Scholar
Yuwen L, Wang L (2013) Chapter 11.5, Nanoparticles and quantum dots. In: Devillanova F, Du Mont WW (eds) Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium, 2nd edn. The Royal Society of Chemistry, Cambridge, pp 232–260
Google Scholar
Zhang B, Ye X, Dai W, Hou W, Zuo F, Xie Y (2006) Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism. Nanotechnology 17:385–390. https://doi.org/10.1088/0957-4484/17/2/007
CAS
CrossRef
Google Scholar
Zheng-Bo Y, Qing L, Chuan-chuan L, Tian-hu C, Jin W (2015) Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria. Bioresour Technol 194:399–402. https://doi.org/10.1016/j.biortech.2015.07.042
CAS
CrossRef
Google Scholar