Skip to main content

Production of Trehalolipid Biosurfactants by Rhodococcus

  • Chapter
  • First Online:
Book cover Biology of Rhodococcus

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

Members of the genus Rhodococcus produce biosurfactants in response to the presence of liquid hydrocarbons in the growth medium. These biosurfactants are predominantly cell-bound glycolipids containing trehalose as the carbohydrate. Physiological roles of these glycolipids are diverse and involve participation in the uptake of water-insoluble substrates, promotion of the cell adhesion to hydrophobic surfaces, and increased rhodococcal resistance to physicochemical influences. In terms of surfactant characteristics (e.g., surface and interfacial tension, critical micelle concentration, emulsifying activity), Rhodococcus biosurfactants compete favorably with other microbial and synthetic surfactants. Additionally, biological activities of trehalolipids from rhodococci were revealed, including immunomodulating, antitumor, and anti-adhesive properties. Recently developed optimization procedures for their biosynthesis and recovery would broaden potential applications of Rhodococcus biosurfactants in new advanced technologies, such as environmental bioremediation, improved material construction, and biomedicine. The present chapter summarizes recent research on Rhodococcus biosurfactants and focuses on biosynthesis features, physicochemical and bioactive properties, and their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhay A, Magnin J-P, Gondrexon N, Baup S, Willison J (2009) Adaptation of a Mycobacterium strain to phenanthrene degradation in a biphasic culture system: influence on interfacial area and droplet size. Biotechnol Lett 31:57–63

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:75–86

    Article  CAS  PubMed  Google Scholar 

  • Aranda FJ, Teruel JA, Espuny MJ, Marqués A, Manresa Á, Palacios-Lidon E, Ortiz A (2007) Domain formation by a Rhodococcus sp. biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes. Biochim Biophys Acta 1768:2596–2604

    Article  CAS  PubMed  Google Scholar 

  • Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 7:3195–3204

    Article  CAS  Google Scholar 

  • Baeva TA, Gein SV, Kuyukina MS, Ivshina IB, Kochina OA, Chereshnev VA (2014) Effect of glycolipid Rhodococcus biosurfactant on secretory activity of neutrophils in vitro. Bull Exp Biol Med 157:238–242

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Batrakov SG, Rozynov BV, Koronelli TV, Bergelson LD (1981) Two novel types of trehalose lipids. Chem Phys Lipids 29:241–266

    Article  CAS  Google Scholar 

  • Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422

    Article  CAS  PubMed  Google Scholar 

  • Bicca FC, Fleck LC, Ayub ZMA (1999) Production of biosurfactant bt hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev Microbiol 30:231–236

    Article  CAS  Google Scholar 

  • Billingsley KA, Backus SM, Wilson S, Singh A, Ward OP (2002) Remediation of PCBs in soil by surfactant washing and biodegradation in the wash by Pseudomonas sp. LB400. Biotechnol Lett 24:1827–1832

    Article  CAS  Google Scholar 

  • Biosurfactants market estimated to be worth $5.52 bn by 2022 (2018). Focus Surfactants 2018(2):4. https://doi.org/10.1016/j.fos.2018.02.014

  • Boffa V, Perrone DG, Magnacca G, Montoneri E (2014) Role of a waste-derived polymeric biosurfactant in the sol–gel synthesis of nanocrystalline titanium dioxide. Ceram Int 40:12161–12169

    Article  CAS  Google Scholar 

  • Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele J-P (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428

    Article  PubMed  Google Scholar 

  • Bryant F (1990) Improved method for the isolation of biosurfactant glycolipids from Rhodococcus sp. strain H13A. Appl Environ Microbiol 56:494–149

    Google Scholar 

  • Cai Q, Zhang B, Chen B, Zhu Z, Lin W, Cao T (2014) Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Mar Pollut Bull 86:402–410

    Article  CAS  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  CAS  PubMed  Google Scholar 

  • Chereshnev VA, Gein SV, Baeva TA, Galkina TV, Kuyukina MS, Ivshina IB (2010) Modulation of cytokine secretion and oxidative metabolism of innate immune effectors by Rhodococcus biosurfactant. Bull Exp Biol Med 149:734–738

    Article  CAS  PubMed  Google Scholar 

  • Choi K-S, Kim S-H, Lee T-H (1999) Purification and characterization of biosurfactant from Tsukamurella sp. 26A. J Microbiol Biotechnol 9:32–38

    CAS  Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929

    Article  CAS  PubMed  Google Scholar 

  • Cooper DG, Zajic JE, Gerson DF (1979) Production of surface-active lipids by Corynebacterium lepus. Appl Environ Microbiol 37:4–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel contaminated soil by microorganisms immobilised in a polyvinyl alcohol cryogel. Int Biodeterior Biodegrad 54:167–174

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208

    Article  PubMed  Google Scholar 

  • Deshpande S, Shiau BJ, Wade D, Sabatini DA, Harwell JH (1999) Surfactant selection for enhancing ex situ soil washing. Wat Res 33:351–360

    Article  CAS  Google Scholar 

  • Espuny MJ, Egido S, Mercade ME, Manresa A (1995) Characterization of trehalose tetraester produced by a waste lube oil degrader Rhodococcus sp. Toxicol Environ Chem 48:83–88

    Article  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627

    Article  CAS  Google Scholar 

  • Gein SV, Kuyukina MS, Ivshina IB, Baeva TA, Chereshnev VA (2011) In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology 63:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gesheva V, Stackebrandt E, Vasileva-Tonkova E (2010) Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr Microbiol 61:112–117

    Article  CAS  PubMed  Google Scholar 

  • Gudina EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharm Sci 34:667–675

    Article  CAS  PubMed  Google Scholar 

  • Haba E, Bresco O, Ferrer C, Marqués A, Busquets M, Manresa A (2000) Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzym Microb Technol 26:40–44

    Article  CAS  Google Scholar 

  • Haddadin MSY, Arqoub AAA, Reesh IA, Haddadin J (2009) Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energy Convers Manag 50:983–990

    Article  CAS  Google Scholar 

  • Hoq MM, Suzutani T, Toyoda T, Horiike G, Yoshida I, Azuma M (1997) Role of γδ TCRM lymphocytes in the augmented resistance of trehalose 6,6-dimycolate-treated mice to influenza virus infection. J Gen Virol 78:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79:7082–7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivshina I, Kostina L, Krivoruchko A, Kuyukina M, Peshkur T, Anderson P, Cunningham C (2016) Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J Hazard Mater 312:8–17

    Article  CAS  PubMed  Google Scholar 

  • Ivshina IB, Kuyukina MS, Kostina LV (2013a) Adaptive mechanisms of nonspecific resistance to heavy metal ions in alkanotrophic actinobacteria. Russ J Ecol 44:123–130

    Article  CAS  Google Scholar 

  • Ivshina IB, Kuyukina MS, Krivoruchko AV (2017) Hydrocarbon-oxidizing bacteria and their potential in eco-biotechnology and bioremediation. In: Kurtböke I (ed) Microbial resources: from functional existence in nature to industrial applications. Elsevier, London, pp 121–148

    Chapter  Google Scholar 

  • Ivshina IB, Kuyukina MS, Krivoruchko AV, Barbe V, Fischer C (2014) Draft genome sequence of propane and butane oxidizing actinobacterium Rhodococcus ruber IEGM 231. Genome Announc 2:6

    Article  Google Scholar 

  • Ivshina IB, Kuyukina MS, Krivoruchko AV, Plekhov OA, Naimark OB, Podorozhko EA, Lozinsky VI (2013b) Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust. Appl Microbiol Biotechnol 97:5315–5327

    Article  CAS  PubMed  Google Scholar 

  • Ivshina IB, Kuyukina MS, Philp JC, Christofi N (1998) Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J Microbiol Biotechnol 14:711–717

    Article  CAS  Google Scholar 

  • Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama S (2000) Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66:5073–5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kacem R, De Sousa-D’Auria C, Tropis M, Chami M, Gounon P, Leblon G, Houssin C, Daffé M (2004) Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Microbiology 150:73–84

    Article  CAS  PubMed  Google Scholar 

  • Kamenskikh TN, Kuyukina MS, Ivshina IB (2004) Some features in preserving actinobacteria of the genus Rhodococcus. Perm Univ Her Biol (2):110–113

    Google Scholar 

  • Kanga SA, Bonner JS, Page CA, Mills MA, Autenrieth RL (1997) Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactant. Environ Sci Technol 31:556–561

    Article  CAS  Google Scholar 

  • Kavyanifard A, Ebrahimipour G, Ghasempour A (2016) Structure characterization of a methylated ester biosurfactant produced by a newly isolated Dietzia cinnamea KA1. Microbiology 85(4):430–435

    Article  CAS  Google Scholar 

  • Kim J-S, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V (1990) Microbial glycolipid pro duction under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem 31:249–253

    Article  PubMed  Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid bio surfactants – from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Nishi S, Fukuoka T, Kitamoto D, Watsuji T-O, Nagano Y, Yabuki A, Nakagawa S, Hatada Y, Horiuchi J (2014) Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Mar Biotechnol 16:484–493

    Article  CAS  Google Scholar 

  • Kosaric N (1992) Biosurfactants in industry. Pure Appl Chem 64:1731–1737

    Article  CAS  Google Scholar 

  • Kretschmer A, Wagner F (1983) Characterization of biosynthetic intermediates of trehalose dicorynomycolates from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864–870

    Google Scholar 

  • Kundu D, Hazra C, Dandi N, Chaudhari A (2013) Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24:775–793

    Article  CAS  PubMed  Google Scholar 

  • Kurane R, Hatamochi K, Kakuno T, Kiyohara M, Tajima T, Hirano M, Taniguchi Y (1995) Chemical structure of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci Biotechnol Biochem 59:1652–1656

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Baeva TA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32:559–568

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Gavrin YA, Podorozhko EA, Lozinsky VI, Jeffree CE, Philp JC (2006) Immobilization of hydrocarbon-oxidizing bacteria in poly(vinyl alcohol) cryogels hydrophobized using a biosurfactant. J Microbiol Methods 65:596–603

    Article  CAS  PubMed  Google Scholar 

  • Kuyukina MS, Ivshina IB, Gein SV, Baeva TA, Chereshnev VA (2007) In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull Exp Biol Med 144:326–330

    Article  CAS  PubMed  Google Scholar 

  • Kuyukina MS, Ivshina IB, Korshunova IO, Stukova GI, Krivoruchko AV (2016) Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 6:14. https://doi.org/10.1186/s13568-016-0186-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    Article  CAS  PubMed  Google Scholar 

  • Kuyukina MS, Ivshina IB, Philp JC, Christofi N, Dunbar SA, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46:149–156

    Article  CAS  PubMed  Google Scholar 

  • Kuyukina MS, Ivshina IB, Ritchkova MI, Chumakov OB (2000) Effect of cell lipid composition on the formation of non-specific antibiotic resistance in alkanotrophic rhodococci. Microbiology 69:51–57

    Article  CAS  Google Scholar 

  • Lang S (2002) Biological amphiphiles microbial biosurfactants. Curr Opin Colloid Interface Sci 7:12–20

    Article  CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 74:59–70

    Article  CAS  Google Scholar 

  • Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LeBlanc JC, Gonçalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Rockne KJ (2003) Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 22:2280–2292

    Article  CAS  PubMed  Google Scholar 

  • Malavenda R, Rizzo C, Michaud L, Gerçe B, Bruni V, Syldatk C, Hausmann R, Giudice AL (2015) Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol 38:1565–1574

    Article  Google Scholar 

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    Article  CAS  PubMed  Google Scholar 

  • Marqués AM, Pinazo Farfan AM, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen L, Chinnapapagari S, Thompson CJ (2005) FbpA-dependent biosynthesis of trehalose di mycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial mor phology of Mycobacterium smegmatis. J Bacteriol 187:6603–6611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitschke M, Silva SSE (2016) Recent food applications of microbial surfactants. Crit Rev Food Sci Nutr 58:631–638

    Article  CAS  Google Scholar 

  • Niescher VW, Lang S, Kaschabek SR, Schlömann M (2006) Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Appl Microbiol Biotechnol 70:605–611

    Article  CAS  PubMed  Google Scholar 

  • Noordman WH, Wachter JHJ, de Boer GJ, Janssen DB (2002) The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotechnol 94:195–212

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Loza FJ, Artiola JF, Maier RM (2001) Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J Environ Qual 30:479–485

    Article  CAS  PubMed  Google Scholar 

  • Ortiz A, Teruel JA, Espuny MJ, Marqués A, Manresa A, Aranda FJ (2008) Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim Biophys Acta 1778:2806–2813

    Article  CAS  PubMed  Google Scholar 

  • Ortiz A, Teruela JA, Espuny MJ, Marqués A, Manresa A, Aranda FJ (2009) Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes. Chem Phys Lipids 158:46–53

    Article  CAS  PubMed  Google Scholar 

  • Pacwa-Płociniczak M, Płociniczak T, Iwan J, Zarska M, Chorazewski M, Dzida M, Piotrowska-Seget Z (2016) Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. J Environ Manag 168:175–184

    Article  CAS  Google Scholar 

  • Page CA, Bonner JS, Kanga SA, Mills MA, Autenrieth RL (1999) Biosurfactant solubilization of PAHs. Environ Eng Sci 16:465–474

    Article  CAS  Google Scholar 

  • Pal MP, Vaidya BK, Desai KM, Joshi RM, Nene SN, Kulkarni BD (2009) Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach. J Ind Microbiol Biotechnol 36:747–756

    Article  CAS  PubMed  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci 138:24–58

    Article  CAS  PubMed  Google Scholar 

  • Passeri A, Lang S, Wagner F, Wray V (1991) Marine biosurfactants, II. Production and characterization of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK 1. J Biosci 46:204–209

    CAS  Google Scholar 

  • Paulino BN, Pessôa MG, Mano MC, Molina G, Neri-Numa IA, Pastore GM (2016) Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 100:10265–10293

    Article  CAS  PubMed  Google Scholar 

  • Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36:277–289

    Article  CAS  PubMed  Google Scholar 

  • Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  PubMed  Google Scholar 

  • Philp JC, Kuyukina MS, Ivshina IB, Dunbar SA, Christofi N, Lang S, Wray V (2002) Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 59:318–324

    Article  CAS  PubMed  Google Scholar 

  • Pirog TP, Shevchuk TA, Voloshina IN, Karpenko EV (2004) Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl Biochem Microbiol 40:470–475

    Article  CAS  Google Scholar 

  • Pirog TP, Shulyakova M, Sofilkanych A, Shevchuk T, Mashchenko O (2015) Biosurfactant synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMVB-7241 and Nocardia vaccinii IMV B-7405 on byproduct of biodiesel production. Food Bioprod Process 93:11–18

    Article  CAS  Google Scholar 

  • Rapp P, Bock H, Urban E, Wagner F, Gebetsbergwer W, Schulzw W (1977) Mikrobielle Bildung eines Trehaloselipids und seine Anwendung in Modellversuchen zum Tensidfluten von Erdollagerstatten. Dechema-Monographien 81:177–186

    CAS  Google Scholar 

  • Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115:491–503

    Article  CAS  Google Scholar 

  • Rapp P, Gabriel-Jürgens LHE (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149:2879–2890

    Article  CAS  PubMed  Google Scholar 

  • Retzinger GS, Meredith SC, Takayama K, Hunter RL, Kezdy FJ (1981) The role of surface in the biological activities of trehalose 6,6-dimicolate. J Biol Chem 256:8208–8216

    CAS  PubMed  Google Scholar 

  • Ristau E, Wagner F (1983) Formation of novel anionic trehalose tetraesters from Rhodococcus erythropolis under growth-limiting conditions. Biotechnol Lett 5:95–100

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri C, Franzetti A, Bestetti G, Caredda P, La Colla P, Pintus M, Sergi S, Tamburini E (2009) Isolation and characterisation of surface active compound producing bacteria from hydrocarbon-contaminated environments. Int Biodeterior Biodegrad 63:936–942

    Article  CAS  Google Scholar 

  • Ryll R, Kumazawa Y, Yano I (2001) Immunological properties of trehalose dimycolate cord factor and other mycolic acid-containing glycolipids – a review. Microbiol Immunol 45:801–811

    Article  CAS  PubMed  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadouk Z, Hacene H, Tazerouti A (2008) Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil Gas Sci Technol 63:747–753

    Article  CAS  Google Scholar 

  • Sakaguchi I, Ikeda N, Nakayama N, Kato Y, Yano I, Kaneda K (2000) Trehalose 6,6-dimycolate cord factor neovascularization trough vascular endothelial growth factor production by neutrophiles and macrophages. Infect Immun 68:2043–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A (2011) Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Colloids Surf B Biointerfaces 82:477–482

    Article  CAS  PubMed  Google Scholar 

  • Singer MEV, Finnerty WR (1990) Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can J Microbiol 36:741–745

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  CAS  PubMed  Google Scholar 

  • Sokolovska I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stainsby FM, Philp JC, Dunbar S, Ivshina IB, Kuyukina MS (2005) Microbial foaming and bulking in activated sludge plants. In: Lehr JH, Keeley J, Lehr J, Kingery TB III (eds) Water encyclopedia: domestic, municipal, and industrial water supply and waste disposal. Wiley, Hoboken, NJ, pp 844–848

    Google Scholar 

  • Sung N, Takayama K, Collins MT (2004) Possible association of GroES and Antigen 85 proteins with heat resistance of Mycobacterium paratuberculosis. Appl Environ Microbiol 70:1688–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sydor T, von Bargen K, Becken U, Spuerck S, Nicholson VM, Prescott JF, Haas A (2008) A mycolyl transferase mutant of Rhodococcus equi lacking capsule integrity is fully virulent. Vet Microbiol 128:327–341

    Article  CAS  PubMed  Google Scholar 

  • Teruel JA, Ortiz A, Aranda FJ (2014) Interactions of a bacterial trehalose lipid with phosphatidylglycerol membranes at low ionic strength. Chem Phys Lipids 181:34–39

    Article  CAS  PubMed  Google Scholar 

  • Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of succionyl trehalose lipid produced by Rhodococcus sp SD-74. J Oleo Sci 58:97–102

    Article  CAS  PubMed  Google Scholar 

  • Tomiyasu I, Yoshinaga J, Kurano F, Kato Y, Kaneda K, Imaizumi S, Yano I (1986) Occurrence of a novel glycolipid, ‘trehalose 2,3,6′-trimycolate’ in a psychrophilic, acid-fast bacterium, Rhodococcus aurantiacus (Gordona aurantiaca). FEBS Lett 203:239–242

    Article  CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710

    Article  CAS  PubMed  Google Scholar 

  • Tzvetkov M, Klopprogge C, Zelder O, Liebl W (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology (SGM) 149:1659–1673

    Article  CAS  Google Scholar 

  • Van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    Article  PubMed  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  PubMed  CAS  Google Scholar 

  • White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744–755

    Article  CAS  PubMed  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Innis WE, Greer SW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia W-J, Dong H-P, Yu L, Yu D-F (2011) Comparative study of biosurfactant produced by microorganisms isolated from formation water of petroleum reservoir. Colloids Surf A Physicochem Eng Asp 392:124–130

    Article  CAS  Google Scholar 

  • Zaragoza A, Teruel JA, Aranda FJ, Ortiz A (2013) Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2. J Colloid Interface Sci 408:132–137

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Yu L, Huang L, Xiu J, Huang Z (2012) Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J Petrol Sci Eng 81:49–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Ministry of Science and Higher Education of the Russian Federation (State Task Registration No. 01201353246 for IEGM and State Task 6.3330.2017/4.6 for PSU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria S. Kuyukina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuyukina, M.S., Ivshina, I.B. (2019). Production of Trehalolipid Biosurfactants by Rhodococcus . In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-11461-9_10

Download citation

Publish with us

Policies and ethics