Skip to main content

Metabolic Profiling in IBD

  • Chapter
  • First Online:
  • 670 Accesses

Abstract

Metabolites are small molecules derived from biochemical processes in metabolism, and their profiling enables the analysis of physiological functions. Metabolic profiling through cross-sectional studies has moved forward to longitudinal cohort studies and metabolome-wide association studies (MWAS) which have helped unveil numerous discoveries in amino acid, fatty acid and energy metabolism pathways and their link in inflammatory bowel disease (IBD). This chapter will introduce metabolic profiling approaches and discuss the role that the metabolites play in the link between the gut microbiome and the host with regard to IBD. We will discuss the various biomarkers, which have been uncovered by metabonomics currently through separation of IBD phenotypes and the future for this area in relation to biomarkers for pathogenesis of IBD and personalizing medical therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. De Preter V, Verbeke K. Metabolomics as a diagnostic tool in gastroenterology. World J Gastrointest Pharmacol Ther. 2013;4:97–107. https://doi.org/10.4292/wjgpt.v4.i4.97.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yoshida M, et al. Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography-mass spectrometry. J Gastroenterol. 2012;47:9–20. https://doi.org/10.1007/s00535-011-0493-8.

    Article  CAS  PubMed  Google Scholar 

  3. Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics. 2007;8:1243–66. https://doi.org/10.2217/14622416.8.9.1243.

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9. https://doi.org/10.1080/004982599238047.

    Article  CAS  PubMed  Google Scholar 

  5. Lin HM, et al. Metabolomic analysis identifies inflammatory and noninflammatory metabolic effects of genetic modification in a mouse model of Crohn's disease. J Proteome Res. 2010;9:1965–75. https://doi.org/10.1021/pr901130s.

    Article  CAS  PubMed  Google Scholar 

  6. Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134:714–7. https://doi.org/10.1016/j.cell.2008.08.026.

    Article  CAS  PubMed  Google Scholar 

  7. Harris DC. Quantitative chemical analysis. 8th ed. New York: W.H. Freeman and Co; 2010.

    Google Scholar 

  8. Beckonert O, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703. https://doi.org/10.1038/nprot.2007.376.

    Article  CAS  PubMed  Google Scholar 

  9. Dona AC, et al. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal Chem. 2014;86:9887–94. https://doi.org/10.1021/ac5025039.

    Article  CAS  PubMed  Google Scholar 

  10. Vorkas PA, et al. Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: application to cardiovascular disease. Anal Chem. 2015;87:4184–93. https://doi.org/10.1021/ac503775m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Want EJ, et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8:17–32. https://doi.org/10.1038/nprot.2012.135.

    Article  CAS  PubMed  Google Scholar 

  12. Veselkov KA, et al. Recursive segment-wise peak alignment of biological (1)h NMR spectra for improved metabolic biomarker recovery. Anal Chem. 2009;81:56–66. https://doi.org/10.1021/ac8011544.

    Article  CAS  PubMed  Google Scholar 

  13. Vu TN, et al. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinformatics. 2011;12:405. https://doi.org/10.1186/1471-2105-12-405.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gromski PS, et al. A tutorial review: metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Anal Chim Acta. 2015;879:10–23. https://doi.org/10.1016/j.aca.2015.02.012.

    Article  CAS  PubMed  Google Scholar 

  15. Beckwith-Hall BM, et al. Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H NMR spectra of biofluids. Analyst. 2002;127:1283–8.

    Article  CAS  PubMed  Google Scholar 

  16. Robinette SL, Lindon JC, Nicholson JK. Statistical spectroscopic tools for biomarker discovery and systems medicine. Anal Chem. 2013;85:5297–303. https://doi.org/10.1021/ac4007254.

    Article  CAS  PubMed  Google Scholar 

  17. Cloarec O, et al. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem. 2005;77:1282–9. https://doi.org/10.1021/ac048630x.

    Article  CAS  PubMed  Google Scholar 

  18. Lindon JC, Nicholson JK. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu Rev Anal Chem (Palo Alto, Calif). 2008;1:45–69. https://doi.org/10.1146/annurev.anchem.1.031207.113026.

    Article  CAS  Google Scholar 

  19. Marchesi JR, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6:546–51. https://doi.org/10.1021/pr060470d.

    Article  CAS  PubMed  Google Scholar 

  20. Jansson J, et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One. 2009;4:e6386. https://doi.org/10.1371/journal.pone.0006386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Le Gall G, et al. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011;10:4208–18. https://doi.org/10.1021/pr2003598.

    Article  CAS  PubMed  Google Scholar 

  22. Hamer HM, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104–19. https://doi.org/10.1111/j.1365-2036.2007.03562.x.

    Article  CAS  PubMed  Google Scholar 

  23. De Preter V, et al. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015;64:447–58. https://doi.org/10.1136/gutjnl-2013-306423.

    Article  CAS  PubMed  Google Scholar 

  24. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14:676–84. https://doi.org/10.1038/ni.2640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mortensen PB, Clausen MR. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl. 1996;216:132–48.

    Article  CAS  PubMed  Google Scholar 

  26. Arpaia N, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5. https://doi.org/10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50. https://doi.org/10.1038/nature12721.

    Article  CAS  PubMed  Google Scholar 

  28. Smith PM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73. https://doi.org/10.1126/science.1241165.

    Article  CAS  PubMed  Google Scholar 

  29. Scheppach W, et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology. 1992;103:51–6.

    Article  CAS  PubMed  Google Scholar 

  30. Segain JP, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut. 2000;47:397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–94. https://doi.org/10.1053/j.gastro.2007.11.059.

    Article  CAS  PubMed  Google Scholar 

  32. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–59. https://doi.org/10.1194/jlr.R500013-JLR200.

    Article  CAS  PubMed  Google Scholar 

  33. Martinez-Augustin O, Sanchez de Medina F. Intestinal bile acid physiology and pathophysiology. World J Gastroenterol: WJG. 2008;14:5630–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duboc H, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531–9. https://doi.org/10.1136/gutjnl-2012-302578.

    Article  CAS  PubMed  Google Scholar 

  35. Schicho R, et al. Quantitative metabolomic profiling of serum, plasma, and urine by (1)H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals. J Proteome Res. 2012;11:3344–57. https://doi.org/10.1021/pr300139q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stephens NS, et al. Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. J Crohns Colitis. 2013;7:e42–8. https://doi.org/10.1016/j.crohns.2012.04.019.

    Article  PubMed  Google Scholar 

  37. Williams HR, et al. Differences in gut microbial metabolism are responsible for reduced hippurate synthesis in Crohn’s disease. BMC Gastroenterol. 2010;10:108. https://doi.org/10.1186/1471-230X-10-108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Williams HR, et al. Characterization of inflammatory bowel disease with urinary metabolic profiling. Am J Gastroenterol. 2009;104:1435–44. https://doi.org/10.1038/ajg.2009.175.

    Article  CAS  PubMed  Google Scholar 

  39. Dawiskiba T, et al. Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases. World J Gastroenterol: WJG. 2014;20:163–74. https://doi.org/10.3748/wjg.v20.i1.163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williams HR, et al. Serum metabolic profiling in inflammatory bowel disease. Dig Dis Sci. 2012;57:2157–65. https://doi.org/10.1007/s10620-012-2127-2.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, et al. 1H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis. Biochem Biophys Res Commun. 2013;433:547–51. https://doi.org/10.1016/j.bbrc.2013.03.012.

    Article  CAS  PubMed  Google Scholar 

  42. Balasubramanian K, et al. Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study. Magn Reson Imaging. 2009;27:79–86. https://doi.org/10.1016/j.mri.2008.05.014.

    Article  CAS  PubMed  Google Scholar 

  43. Bjerrum JT, et al. Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. J Proteome Res. 2010;9:954–62. https://doi.org/10.1021/pr9008223.

    Article  CAS  PubMed  Google Scholar 

  44. Ooi M, et al. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Inflamm Res. 2011;60:831–40. https://doi.org/10.1007/s00011-011-0340-7.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma U, Singh RR, Ahuja V, Makharia GK, Jagannathan NR. Similarity in the metabolic profile in macroscopically involved and un-involved colonic mucosa in patients with inflammatory bowel disease: an in vitro proton ((1)H) MR spectroscopy study. Magn Reson Imaging. 2010;28:1022–9. https://doi.org/10.1016/j.mri.2010.03.039.

    Article  PubMed  Google Scholar 

  46. Schicho R, et al. Quantitative metabolomic profiling of serum and urine in DSS-induced ulcerative colitis of mice by (1)H NMR spectroscopy. J Proteome Res. 2010;9:6265–73. https://doi.org/10.1021/pr100547y.

    Article  CAS  PubMed  Google Scholar 

  47. Li M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A. 2008;105:2117–22. https://doi.org/10.1073/pnas.0712038105.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ezri J, Marques-Vidal P, Nydegger A. Impact of disease and treatments on growth and puberty of pediatric patients with inflammatory bowel disease. Digestion. 2012;85:308–19. https://doi.org/10.1159/000336766.

    Article  CAS  PubMed  Google Scholar 

  49. Shamir R, Phillip M, Levine A. Growth retardation in pediatric Crohn’s disease: pathogenesis and interventions. Inflamm Bowel Dis. 2007;13:620–8. https://doi.org/10.1002/ibd.20115.

    Article  PubMed  Google Scholar 

  50. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V. Faecal and serum metabolomics in paediatric inflammatory bowel disease. J Crohns Colitis. 2017;11:321–34. https://doi.org/10.1093/ecco-jcc/jjw158.

    Article  PubMed  Google Scholar 

  51. Martin FP, et al. Urinary metabolic insights into host-gut microbial interactions in healthy and IBD children. World J Gastroenterol: WJG. 2017;23:3643–54. https://doi.org/10.3748/wjg.v23.i20.3643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shiomi Y, et al. GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflamm Bowel Dis. 2011;17:2261–74. https://doi.org/10.1002/ibd.21616.

    Article  PubMed  Google Scholar 

  53. Hisamatsu T, et al. Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. PLoS One. 2012;7:e31131. https://doi.org/10.1371/journal.pone.0031131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee T, et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017;66:863–71. https://doi.org/10.1136/gutjnl-2015-309940.

    Article  CAS  PubMed  Google Scholar 

  55. Jia H, et al. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis. Sci Rep. 2017;7:43993. https://doi.org/10.1038/srep43993.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lin HM, Edmunds SI, Helsby NA, Ferguson LR, Rowan DD. Nontargeted urinary metabolite profiling of a mouse model of Crohn’s disease. J Proteome Res. 2009;8:2045–57. https://doi.org/10.1021/pr800999t.

    Article  CAS  PubMed  Google Scholar 

  57. Martin FP, et al. Metabolic assessment of gradual development of moderate experimental colitis in IL-10 deficient mice. J Proteome Res. 2009;8:2376–87. https://doi.org/10.1021/pr801006e.

    Article  CAS  PubMed  Google Scholar 

  58. Murdoch TB, et al. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Anal Chem. 2008;80:5524–31. https://doi.org/10.1021/ac8005236.

    Article  CAS  PubMed  Google Scholar 

  59. Glymenaki M, et al. Stability in metabolic phenotypes and inferred metagenome profiles before the onset of colitis-induced inflammation. Sci Rep. 2017;7:8836. https://doi.org/10.1038/s41598-017-08732-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Glymenaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glymenaki, M., Li, J.V., Marchesi, J.R. (2019). Metabolic Profiling in IBD. In: Sheng Ding, N., De Cruz, P. (eds) Biomarkers in Inflammatory Bowel Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-11446-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11446-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11445-9

  • Online ISBN: 978-3-030-11446-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics