Skip to main content

The Microbiome in IBD

  • Chapter
  • First Online:
Book cover Biomarkers in Inflammatory Bowel Diseases

Abstract

In individuals with IBD, the microbiome occupies an integral juncture between their genetics and disease profile and may participate to the manifestations of the disease and the severity of its course. This chapter will highlight major microbiome research studies showing the pathobionts and symbionts in the human microbiome associated with IBD. It will also include a brief outline of various bacterial, viral and fungal sequencing techniques, including 16S rRNA and hiSeQ, along with a post-processing interpretation of the data to arrive at potential biomarkers of IBD. It will also cover the major microbial signatures found in association with IBD, including postoperative recurrence of Crohn’s and the occurrence of pouchitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ananthakrishnan A, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe. 2017;21(5):603–10.

    Article  CAS  Google Scholar 

  2. Bajer L, et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol. 2017;23(25):4548–58.

    Article  CAS  Google Scholar 

  3. Balzola F, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Inflammatory Bowel Disease Monitor. 2012;13(2):73.

    Google Scholar 

  4. Bazin T, et al. A simple biomarker for IBD associated dysbiosis: the ratio of Iso-LCA/LCA indicates alteration of isomeration of bile acids in the intestinal lumen. Gastroenterology. 2015;148(4 Suppl 1):S–718.

    Google Scholar 

  5. Bejaoui M, Sokol H, Marteau P. Targeting the microbiome in inflammatory bowel disease: critical evaluation of current concepts and moving to new horizons. Dig Dis. 2015;33(Suppl 1):105–12.

    Article  Google Scholar 

  6. Benjamin JL, et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut. 2011;60(7):923–9.

    Article  CAS  Google Scholar 

  7. Blottière HM, et al. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc. 2003;62:101–6.

    Article  Google Scholar 

  8. Cammarota G, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569–80.

    Article  Google Scholar 

  9. Canani RB, et al. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17(12):1519–28.

    Article  CAS  Google Scholar 

  10. Costea PI, et al. Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol. 2017;35(11):1069–76.

    CAS  PubMed  Google Scholar 

  11. Costello SP, et al. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment Pharmacol Ther. 2017;46(3):213–24.

    Article  CAS  Google Scholar 

  12. De Cruz P, et al. Association between specific mucosa-associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study. J Gastroenterol Hepatol. 2015;30(2):268–78.

    Article  Google Scholar 

  13. Dey N, et al. Association of gut microbiota with post-operative clinical course in Crohn’s disease. BMC Gastroenterol. 2013;13(131):1–11.

    Google Scholar 

  14. Filyk HA, Osborne LC. The multibiome: the intestinal ecosystem’s influence on immune homeostasis, health, and disease. EBioMedicine. 2016;13:46–54.

    Article  Google Scholar 

  15. Gevers D, et al. The treatment-naïve microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92.

    Article  CAS  Google Scholar 

  16. Gomollón F, et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J Crohn’s Colitis. 2017;11(1):3–25.

    Article  Google Scholar 

  17. Hampe J, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207–11.

    Article  CAS  Google Scholar 

  18. Harbord M, et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: current management. J Crohn’s Colitis. 2017;11(7):769–84.

    Article  Google Scholar 

  19. Harrell L, et al. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon. PLoS One. 2012;7(2):e32545.

    Article  CAS  Google Scholar 

  20. Hugot JP, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.

    Article  CAS  Google Scholar 

  21. Imhann F, et al. Gene-microbiome interactions underlying the onset and the clinical phenotypes of inflammatory bowel disease. Gastroenterology. 2016;150(4):S22.

    Article  Google Scholar 

  22. Lepage P, et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis. 2005;11(5):473–80.

    Article  Google Scholar 

  23. Lepage P, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141(1):227–36.

    Article  Google Scholar 

  24. Machiels K, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8):1275–83.

    Article  CAS  Google Scholar 

  25. Machiels K, et al. Specific members of the predominant gut microbiota predict pouchitis following colectomy and IPAA in UC. Gut. 2017;66(1):79–88.

    Article  Google Scholar 

  26. Maharshak N, et al. Alterations of enteric microbiota in patients with a normal ileal pouch are predictive of pouchitis. J Crohn’s Colitis. 2017;11(3):314–20.

    Google Scholar 

  27. Marteau P, et al. Comparative study of bacterial groups within the human cecal and fecal microbiota comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol. 2001;67(10):4939–42.

    Article  CAS  Google Scholar 

  28. Metwaly AA, et al. Identification of disease-relevant bacterial signatures in gnotobiotic IL-10 deficient mice using fecal samples from IBD patients undergoing hematopoietic stem cell transplantation. Gastroenterology. 2017;152(5):S989.

    Article  Google Scholar 

  29. Moayyedi P, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149(1):102–9.

    Article  Google Scholar 

  30. Mondot S, et al. Structural robustness of the gut mucosal microbiota is associated with Crohn’s disease remission after surgery. Gut. 2016;65(6):954–62.

    Article  CAS  Google Scholar 

  31. Mottawea W, et al. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat Commun. 2016;7:13419.

    Article  CAS  Google Scholar 

  32. Naftali T, et al. Distinct microbiotas are associated with ileum-restricted and Colon-involving Crohnʼs disease. Inflamm Bowel Dis. 2016;22(2):293–302.

    Article  Google Scholar 

  33. Ng SC, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Gastroenterology. 2017;152(5):S970–1.

    Article  Google Scholar 

  34. Paramsothy S, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389(10075):1218–28.

    Article  Google Scholar 

  35. Parkes M, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39(7):830–2.

    Article  CAS  Google Scholar 

  36. Pascal V, et al. A microbial signature for Crohn’s disease. Gut. 2017;0:1–10.

    Google Scholar 

  37. Rajca S, et al. Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm Bowel Dis. 2014;20(6):978–86.

    PubMed  Google Scholar 

  38. Rajilić-Stojanović M, et al. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis. 2013;19(3):481–8.

    Article  Google Scholar 

  39. Rioux JD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604.

    Article  CAS  Google Scholar 

  40. Rossen NG, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149(1):110–8.

    Article  Google Scholar 

  41. Segain J, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47(3):397–403.

    Article  CAS  Google Scholar 

  42. Shaw KA, et al. Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease. Genome Med. 2016;8(1):75.

    Article  Google Scholar 

  43. Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–6.

    Article  CAS  Google Scholar 

  44. Sokol H, et al. Fungal microbiota dysbiosis in IBD. Gut. 2016:1–10. Available at: http://gut.bmj.com/content/early/2016/02/03/gutjnl-2015-310746?papetoc.

  45. Sokol H, Seksik P, Furet JP. Low counts of Faecalibacterium Prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183–9.

    Article  CAS  Google Scholar 

  46. Sokol H, Seksik P, Rigottier-Gois L. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12(2):106–11.

    Article  Google Scholar 

  47. Tedelind S, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate : a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007;13(20):2826–32.

    Article  CAS  Google Scholar 

  48. Tedjo DI, et al. The fecal microbiota as a biomarker for disease activity in Crohn’s disease. Sci Rep. 2016;6:35216.

    Article  CAS  Google Scholar 

  49. Varela E, et al. Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. Aliment Pharmacol Ther. 2013;38(2):151–61.

    Article  CAS  Google Scholar 

  50. Vinolo MAR, et al. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3(10):858–76.

    Article  CAS  Google Scholar 

  51. Wong C, Harris PJ, Ferguson LR. Potential benefits of dietary fibre intervention in inflammatory bowel disease. Int J Mol Sci. 2016;17(6).

    Article  Google Scholar 

  52. Wright EK, et al. Microbial factors associated with postoperative Crohn’s disease recurrence. J Crohn’s Colitis. 2017;11(2):191–203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Marteau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peyrottes, A., Seksik, P., Doré, J., Marteau, P. (2019). The Microbiome in IBD. In: Sheng Ding, N., De Cruz, P. (eds) Biomarkers in Inflammatory Bowel Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-11446-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11446-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11445-9

  • Online ISBN: 978-3-030-11446-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics