Skip to main content

Spatial and Spatio-Temporal Analysis of Precipitation Data from South Carolina

  • Chapter
  • First Online:
Modern Statistical Methods for Spatial and Multivariate Data

Abstract

We build a Bayesian spatio-temporal model for rainfall in South Carolina based on a three-stage hierarchical structure with data, process, and parameters. In our Gaussian process model, we model the true underlying process in the first level and the spatio-temporal random effect in the second level of the hierarchy. The prior distribution of the parameters and hyperparameters is specified in the third stage. We also extend the Gaussian process model to an autoregressive model by adding a temporal correlation parameter ρ.

A first-order harmonic regression is used to remove seasonality. Accounting for seasonality is essential to our Gaussian process model since a homogeneous structure across all monthly observations is assumed. In addition, the covariates elevation and temperature are also included in the Gaussian process model. In particular, we incorporate a variable related to sea surface temperature (SST) to reflect the effect of El Niño-Southern Oscillation (ENSO) activity. Kernel smoothing is used to derive this feature. Preliminary model fitting results suggest that SST has a negative effect on the rainfall amount. Another finding is that mean precipitation in South Carolina is significantly higher in 2015, when the area suffered from substantial floods.

We also compare the Gaussian process model with another common framework to handle spatio-temporal data, the dynamic linear model (DLM), which while not predicting out-of-sample rainfall as well as the Gaussian process model allows a more detailed monthly study of the effect of covariates. For example, the SST-based variable affects the rainfall amount more significantly during the first few months of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  • Bakar, K.S., Sahu, S.K.: spTimer: spatio-temporal Bayesian modeling using R. J. Stat. Softw. 63(15), 1–32 (2015)

    Google Scholar 

  • Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  • Benzécri, J.P.: L’Analyse des Données. Dunod, Paris (1973)

    MATH  Google Scholar 

  • Berne, A., Delrieu, G., Boudevillain, B.: Variability of the spatial structure of intense Mediterranean precipitation. Adv. Water Resour. 32(7), 1031–1042 (2009)

    Article  Google Scholar 

  • Bivand, R.S., Pebesma, E.J., Gomez-Rubio, V., Pebesma, E.J.: Applied Spatial Data Analysis with R. Springer, New York (2008)

    MATH  Google Scholar 

  • Ciach, G.J., Krajewski, W.F.: Analysis and modeling of spatial correlation structure in small-scale rainfall in central Oklahoma. Adv. Water Resour. 29(10), 1450–1463 (2006)

    Article  Google Scholar 

  • Cressie, N.: Statistics for Spatial Data. Wiley, New York (1993)

    Book  Google Scholar 

  • Cressie, N., Wikle, C.K.: Statistics for Spatio-Temporal Data. Wiley, New York (2015)

    MATH  Google Scholar 

  • Deidda, R.: Rainfall downscaling in a space-time multifractal framework. Water Resour. Res. 36(7), 1779–1794 (2000)

    Article  Google Scholar 

  • Delhomme, J.P.: Kriging in the hydrosciences. Adv. Water Resour. 1(5), 251–266 (1978)

    Article  Google Scholar 

  • Delfiner, P., Delhomme, J.P.: Optimum Interpolation by Kriging. Ecole Nationale Supérieure des Mines, Paris (1975)

    Google Scholar 

  • Diggle, P.J., Tawn, J.A., Moyeed, R.A.: Model-based geostatistics. J. R. Stat. Soc.: Ser. C: Appl. Stat. 47(3), 299–350 (1998)

    Article  MathSciNet  Google Scholar 

  • Dima, M., Lohmann, G.: Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J. Clim. 23(1), 5–16 (2010)

    Article  Google Scholar 

  • Dumitrescu, A., Birsan, M.V., Manea, A.: Spatio-temporal interpolation of sub-daily (6 h) precipitation over Romania for the period 1975–2010. Int. J. Climatol. 36(3), 1331–1343 (2016)

    Article  Google Scholar 

  • Ferraris, L., Gabellani, S., Rebora, N., Provenzale, A.: A comparison of stochastic models for spatial rainfall downscaling. Water Resour. Res. 39(12), 1368 (2003). https://doi.org/10.1029/2003WR002504

    Article  Google Scholar 

  • Finley, A.O., Banerjee, S., Carlin, B.P.: spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. J. Stat. Softw. 19(4), 1 (2007)

    Google Scholar 

  • Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M.: Handbook of Spatial Statistics. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  • Georgakakos, K.P., Kavvas, M.L.: Precipitation analysis, modeling, and prediction in hydrology. Rev. Geophys. 25(2), 163–178 (1987)

    Article  Google Scholar 

  • Häkkinen, S.: Decadal air-sea interaction in the North Atlantic based on observations and modeling results. J. Clim. 13(6), 1195–1219 (2000)

    Article  Google Scholar 

  • Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  • Hughes, J., Haran, M.: Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J. R. Stat. Soc. Ser. B Stat Methodol. 75(1), 139–159 (2013)

    Article  MathSciNet  Google Scholar 

  • Isaaks, H.E., Srivastava, R.M.: Applied Geostatistics. Oxford University Press, New York (1989)

    Google Scholar 

  • Kumar, P., Foufoula-Georgiou, E.: Characterizing multiscale variability of zero intermittency in spatial rainfall. J. Appl. Meteorol. 33(12), 1516–1525 (1994)

    Article  Google Scholar 

  • Ly, S., Charles, C., Degre, A.: Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci. 15(7), 2259–2274 (2011)

    Article  Google Scholar 

  • Matheron, G.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)

    Article  Google Scholar 

  • Mehta, V., Suarez, M., Manganello, J.V., Delworth, T.D.: Oceanic influence on the North Atlantic oscillation and associated northern hemisphere climate variations: 1959–1993. Geophys. Res. Lett. 27(1), 121–124 (2000)

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  • National Oceanic and Atmosphere Administration, U.S. Department of Commerce: Service assessment: the historic South Carolina floods of October 1–5, 2015. www.weather.gov/media/publications/assessments/SCFlooding_072216_Signed_Final.pdf (2015). Accessed 4 Dec 2017

  • Rodríguez, S., Huerta, G., Reyes, H.: A study of trends for Mexico city ozone extremes: 2001–2014. Atmósfera 29(2), 107–120 (2016)

    Article  Google Scholar 

  • Sahu, S.K., Bakar, K.S.: Hierarchical Bayesian autoregressive models for large space–time data with applications to ozone concentration modeling. Appl. Stoch. Model. Bus. Ind. 28(5), 395–415 (2012)

    Article  Google Scholar 

  • Samadi, S., Tufford, D., Carbone, G.: Estimating hydrologic model uncertainty in the presence of complex residual error structures. Stoch. Environ. Res. Risk Assess. 32(5), 1259–1281 (2018)

    Article  Google Scholar 

  • Sharon, D.: Spatial analysis of rainfall data from dense networks. Hydrol. Sci. J. 17(3), 291–300 (1972)

    Article  Google Scholar 

  • Stroud, J.R., Müller, P., Sansó, B.: Dynamic models for spatio-temporal data. J. R. Stat. Soc. Ser. B Stat. Methodol. 63(4), 673–689 (2001)

    Article  MathSciNet  Google Scholar 

  • Tabios III, Q.G., Salas, J.D.: A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour. Bull. 21(3), 365–380 (1985)

    Article  Google Scholar 

  • Thiessen, A.H.: Precipitation averages for large areas. Mon. Weather Rev. 39(7), 1082–1084 (1911)

    Google Scholar 

  • Troutman, B.M.: Runoff prediction errors and bias in parameter estimation induced by spatial variability of precipitation. Water Resour. Res. 19(3), 791–810 (1983)

    Article  Google Scholar 

  • Wang, C., Enfield, D.B., Lee, S.K., Landsea, C.W.: Influences of the Atlantic warm pool on western hemisphere summer rainfall and Atlantic hurricanes. J. Clim. 19(12), 3011–3028 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Hitchcock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Hitchcock, D.B., Samadi, S. (2019). Spatial and Spatio-Temporal Analysis of Precipitation Data from South Carolina. In: Diawara, N. (eds) Modern Statistical Methods for Spatial and Multivariate Data. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-030-11431-2_2

Download citation

Publish with us

Policies and ethics