Skip to main content

Complex Market Dynamics in the Light of Random Matrix Theory

  • Chapter
  • First Online:
New Perspectives and Challenges in Econophysics and Sociophysics

Part of the book series: New Economic Windows ((NEW))

Abstract

We present a brief overview of random matrix theory (RMT) with the objectives of highlighting the computational results and applications in financial markets as complex systems. An oft-encountered problem in computational finance is the choice of an appropriate epoch over which the empirical cross-correlation return matrix is computed. A long epoch would smoothen the fluctuations in the return time series and suffers from non-stationarity, whereas a short epoch results in noisy fluctuations in the return time series and the correlation matrices turn out to be highly singular. An effective method to tackle this issue is the use of the power mapping, where a non-linear distortion is applied to a short epoch correlation matrix. The value of distortion parameter controls the noise-suppression. The distortion also removes the degeneracy of zero eigenvalues. Depending on the correlation structures, interesting properties of the eigenvalue spectra are found. We simulate different correlated Wishart matrices to compare the results with empirical return matrices computed using the S&P 500 (USA) market data for the period 1985–2016. We also briefly review two recent applications of RMT in financial stock markets: (i) Identification of “market states” and long-term precursor to a critical state; (ii) Characterization of catastrophic instabilities (market crashes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-Yam, Y.: General Features of Complex Systems. Encyclopedia of Life Support Systems (EOLSS). UNESCO, EOLSS Publishers, UK (2002)

    Google Scholar 

  2. Bendat, J.S., Piersol, A.G.: Engineering Applications of Correlation and Spectral Analysis, p. 315. Wiley-Interscience, New York (1980)

    Google Scholar 

  3. Bouchaud, J.P., Potters, M.: Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  4. Cartan, É.: Sur les domaines bornés homogènes de lespace den variables complexes. In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 11, pp. 116–162. Springer, Berlin (1935)

    Google Scholar 

  5. Chakraborti, A., Muni Toke, I., Patriarca, M., Abergel, F.: Econophysics review: I. empirical facts. Quant. Financ. 11(7), 991–1012 (2011)

    Google Scholar 

  6. Chakraborti, A., Muni Toke, I., Patriarca, M., Abergel, F.: Econophysics review: II. agent-based models. Quant. Financ. 11(7), 1013–1041 (2011)

    Google Scholar 

  7. Chakraborti, A., Patriarca, M., Santhanam, M.: Financial time-series analysis: a brief overview. In: Econophysics of Markets and Business Networks, pp. 51–67. Springer, Berlin (2007)

    Google Scholar 

  8. Chakraborti, A., Sharma, K., Pharasi, H.K., Das, S., Chatterjee, R., Seligman, T.H.: Characterization of catastrophic instabilities: market crashes as paradigm (2018). arXiv:1801.07213

  9. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

    Article  Google Scholar 

  10. Gell-Mann, M.: What is complexity? Complexity 1, 16–19 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. Guhr, T., Kälber, B.: A new method to estimate the noise in financial correlation matrices. J. Phys. A: Math. Gen. 36(12), 3009 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hua, L.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, vol. 6. American Mathematical Society (1963)

    Google Scholar 

  13. Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data research. Big Data Res. 2(2), 59–64 (2015)

    Article  Google Scholar 

  14. Leviandier, L., Lombardi, M., Jost, R., Pique, J.P.: Fourier transform: a tool to measure statistical level properties in very complex spectra. Phys. Rev. Lett. 56(23), 2449 (1986)

    Article  ADS  Google Scholar 

  15. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  16. Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR-Sbornik 1(4), 457 (1967)

    Article  Google Scholar 

  17. Martinez, M.M.R.: Caracterización estadistica de mercados europeos. Master’s thesis, UNAM (2018)

    Google Scholar 

  18. Mehta, M.L.: Random Matrices. Academic (2004)

    Google Scholar 

  19. Mikosch, T., Stărică, C.: Nonstationarities in financial time series, the long-range dependence, and the igarch effects. Rev. Econ. Stat. 86(1), 378–390 (2004)

    Article  Google Scholar 

  20. Münnix, M.C., Shimada, T., Schäfer, R., Leyvraz, F., Seligman, T.H., Guhr, T., Stanley, H.E.: Identifying states of a financial market. Sci. Rep. 2, 644 (2012)

    Article  ADS  Google Scholar 

  21. Ochoa, S.: Mapeo de Guhr-Kaelber aplicado a matrices de correlación singulares de dos mercados financieros. Master’s thesis, UNAM (2018)

    Google Scholar 

  22. Pandey, A., et al.: Correlated Wishart ensembles and chaotic time series. Phys. Rev. E 81(3), 036202 (2010)

    Google Scholar 

  23. Pharasi, H.K., Sharma, K., Chatterjee, R., Chakraborti, A., Leyvraz, F., Seligman, T.H.: Identifying long-term precursors of financial market crashes using correlation patterns. New J. Phys. 20, 103041 (2018). arXiv:1809.00885

  24. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T., Stanley, H.E.: Random matrix approach to cross correlations in financial data. Phys. Rev. E 65(6), 066126 (2002)

    Google Scholar 

  25. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Universal and nonuniversal properties of cross correlations in financial time series. Phys. Rev. Lett. 83(7), 1471 (1999)

    Article  ADS  Google Scholar 

  26. Schäfer, R., Nilsson, N.F., Guhr, T.: Power mapping with dynamical adjustment for improved portfolio optimization. Quant. Financ. 10(1), 107–119 (2010)

    Article  MathSciNet  Google Scholar 

  27. Sharma, K., Shah, S., Chakrabarti, A.S., Chakraborti, A.: Sectoral co-movements in the Indian stock market: a mesoscopic network analysis, pp. 211–238 (2017)

    Google Scholar 

  28. Shuryak, E.V., Verbaarschot, J.: Random matrix theory and spectral sum rules for the Dirac operator in QCD. Nuclear Phys. A 560(1), 306–320 (1993)

    Google Scholar 

  29. Sinha, S., Chatterjee, A., Chakraborti, A., Chakrabarti, B.K.: Econophysics: an Introduction. Wiley, New York (2010)

    Google Scholar 

  30. Utsugi, A., Ino, K., Oshikawa, M.: Random matrix theory analysis of cross correlations in financial markets. Phys. Rev. E 70(2), 026110 (2004)

    Google Scholar 

  31. Vemuri, V.: Modeling of Complex Systems: An Introduction. Academic, New York (1978)

    MATH  Google Scholar 

  32. Vinayak, Prosen, T., Buc̆a, B., Seligman, T.H.: Spectral analysis of finite-time correlation matrices near equilibrium phase transitions. Europhys. Lett. 108(2), 20006 (2014)

    Google Scholar 

  33. Vinayak, Schäfer, R., Seligman, T.H.: Emerging spectra of singular correlation matrices under small power-map deformations. Phys. Rev. E 88(3), 032115 (2013)

    Google Scholar 

  34. Vinayak, Seligman, T.H.: Time series, correlation matrices and random matrix models. In: AIP Conference Proceedings, vol. 1575, pp. 196–217. AIP (2014)

    Google Scholar 

  35. Vyas, M., Guhr, T., Seligman, T.H.: Multivariate analysis of short time series in terms of ensembles of correlation matrices (2018). arXiv:1801.07790

  36. Wigner, E.: Ep wigner. Ann. Math. 53, 36 (1951)

    Google Scholar 

  37. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 325–327 (1958)

    Google Scholar 

  38. Wigner, E.P.: Random matrices in physics. SIAM Rev. 9(1), 1–23 (1967)

    Article  ADS  Google Scholar 

  39. Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 32–52 (1928)

    Google Scholar 

  40. Yahoo finance database. https://finance.yahoo.co.jp/ (2017). Accessed 7 July 2017, using the R open source programming language and software environment for statistical computing and graphics

Download references

Acknowledgements

The authors thank R. Chatterjee, S. Das and F. Leyvraz for various fruitful discussions. A.C. and K.S. acknowledge the support by grant number BT/BI/03/004/2003(C) of Govt. of India, Ministry of Science and Technology, Department of Biotechnology, Bioinformatics division, University of Potential Excellence-II grant (Project ID-47) of JNU, New Delhi, and the DST-PURSE grant given to JNU by the Department of Science and Technology, Government of India. K.S. acknowledges the University Grants Commission (Ministry of Human Resource Development, Govt. of India) for her senior research fellowship. H.K.P. is grateful for postdoctoral fellowship provided by UNAM-DGAPA. A.C., H.K.P., K.S. and T.H.S. acknowledge support by Project CONACyT Fronteras 201, and also support from the project UNAM-DGAPA-PAPIIT IG 100616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Chakraborti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pharasi, H.K., Sharma, K., Chakraborti, A., Seligman, T.H. (2019). Complex Market Dynamics in the Light of Random Matrix Theory. In: Abergel, F., Chakrabarti, B., Chakraborti, A., Deo, N., Sharma, K. (eds) New Perspectives and Challenges in Econophysics and Sociophysics. New Economic Windows. Springer, Cham. https://doi.org/10.1007/978-3-030-11364-3_2

Download citation

Publish with us

Policies and ethics