Skip to main content

The Neurological and Immunological Transitions of the Perimenopause: Implications for Postmenopausal Neurodegenerative Disease

  • Chapter
  • First Online:
Sex Steroids' Effects on Brain, Heart and Vessels

Part of the book series: ISGE Series ((ISGE))

Abstract

While the clinical definition of perimenopause focuses on functional changes in the reproductive system, the symptoms of perimenopause are largely neurological and immunological in nature and are observed in women globally across cultures, races, and ethnicities. Estrogen is the master regulator of the metabolic system of the female brain and body. During the perimenopausal transition, what is known as the “estrogen receptor network” is disconnected from the bioenergetic system resulting in a hypometabolic state that is associated with neurological dysfunction, which in some women may increase risk for neurodegenerative disease. Moreover, an APOE4 genotype exacerbates that bioenergetic crisis. Neurological symptoms that emerge during the perimenopause reflect the disruption in multiple estrogen-regulated systems including thermoregulation, sleep and circadian rhythms, sensory processing, affect, and multiple domains of cognitive function. Many of these symptoms are also associated with risk of Alzheimer’s disease (AD), which in women is twice as high than in men. Such elevated risk is correlated to obesity and systemic inflammation due to estrogen depletion occurring in perimenopause and menopause. Aging and neurodegenerative brains are found to be associated with chronic neuroinflammation primarily due to a dysregulation of the innate immunity, mainly driven by senescent microglia. Identifying women with metabolic or inflammatory at-risk phenotypes for late-onset AD might translate into a target population that is likely to respond to estrogen replacement therapy and adjuvant therapies that serve as metabolic regulators. Transitions of female aging involve a set of sequential, system-level adaptations. The perimenopausal transition is a critical period in the neuro-adaptive landscape of the aging brain and represents a window of opportunity for precision hormone therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations. Word population prospects: the 2017 revision. Department of Economic and Social Affairs, Population Division. 2017. https://esa.un.org/unpd/wpp/dataquery/. Accessed 17 Jul 2017.

  2. Gold EB, Bromberger J, Crawford S, et al. Factors associated with age at natural menopause in a multiethnic sample of midlife women. Am J Epidemiol. 2001;153(9):865–74.

    Article  CAS  PubMed  Google Scholar 

  3. Gold EB. The timing of the age at which natural menopause occurs. Obstet Gynecol Clin N Am. 2011;38(3):425–40.

    Article  Google Scholar 

  4. Harlow SD, Gass M, Hall JE, et al. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. Menopause. 2012;19(4):387–95.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brinton RD, Yao J, Yin F, Mack WJ, Cadenas E. Perimenopause as a neurological transition. Nat Rev Endocrinol. 2015;11:393–405.

    Article  CAS  PubMed  Google Scholar 

  6. Maki PM, Drogos LL, Rubin LH, Banuvar S, Shulman LP, Geller SE. Objective hot flashes are negatively related to verbal memory performance in midlife women. Menopause. 2008;15(5):848–56.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maki PM, Rubin LH, Cohen M, et al. Depressive symptoms are increased in the early perimenopausal stage in ethnically diverse human immunodeficiency virus-infected and human immunodeficiency virus-uninfected women. Menopause. 2012;19(11):1215–23.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Greendale GA, Huang MH, Wight RG, et al. Effects of the menopause transition and hormone use on cognitive performance in midlife women. Neurology. 2009;72(21):1850–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greendale GA, Wight RG, Huang MH, et al. Menopause-associated symptoms and cognitive performance: results from the study of women’s health across the nation. Am J Epidemiol. 2010;171(11):1214–24.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rasgon N, Shelton S, Halbreich U. Perimenopausal mental disorders: epidemiology and phenomenology. CNS Spectr. 2005;10(6):471–8.

    Article  PubMed  Google Scholar 

  11. Schmidt PJ, Rubinow DR. Reproductive ageing, sex steroids and depression. J Br Menopause Soc. 2006;12(4):178–85.

    Article  PubMed  Google Scholar 

  12. Schmidt PJ, Rubinow DR. Sex hormones and mood in the perimenopause. Ann N Y Acad Sci. 2009;1179:70–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber MT, Rubin LH, Maki PM. Cognition in perimenopause: the effect of transition stage. Menopause. 2013;20(5):511–7.

    PubMed  Google Scholar 

  14. Weber MT, Maki PM, McDermott MP. Cognition and mood in perimenopause: a systematic review and meta-analysis. J Steroid Biochem Mol Biol. 2014;142:90–8.

    Article  CAS  PubMed  Google Scholar 

  15. Freeman EW, Sammel MD, Lin H. Temporal associations of hot flashes and depression in the transition to menopause. Menopause. 2009;16(4):728–34.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bromberger JT, Schott LL, Kravitz HM, et al. Longitudinal change in reproductive hormones and depressive symptoms across the menopausal transition: results from the Study of Women’s Health Across the Nation (SWAN). Arch Gen Psychiatry. 2010;67(6):598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thurston RC, Santoro N, Matthews KA. Adiposity and hot flashes in midlife women: a modifying role of age. J Clin Endocrinol Metab. 2011;96(10):E1588–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nelson HD. Menopause. Lancet. 2008;371(9614):760–70.

    Article  PubMed  Google Scholar 

  19. Usall J, Pinto-Meza A, Fernandez A, et al. Suicide ideation across reproductive life cycle of women. Results from a European epidemiological study. J Affect Disord. 2009;116(1–2):144–7.

    Article  PubMed  Google Scholar 

  20. Genazzani AR, Bernardi F, Pluchino N, et al. Endocrinology of menopausal transition and its brain implications. CNS Spectr. 2005;10(6):449–57.

    Article  PubMed  Google Scholar 

  21. Genazzani AR, Gambacciani M, Simoncini T. Menopause and aging, quality of life and sexuality. Climacteric. 2007;10(2):88–96.

    Article  CAS  PubMed  Google Scholar 

  22. Genazzani AR, Pluchino N, Luisi S, Luisi M. Estrogen, cognition and female ageing. Hum Reprod Update. 2007;13(2):175–87.

    Article  CAS  PubMed  Google Scholar 

  23. Cray LA, Woods NF, Mitchell ES. Identifying symptom clusters during the menopausal transition: observations from the Seattle Midlife Women’s Health Study. Climacteric. 2013;16(5):539–49.

    Article  CAS  PubMed  Google Scholar 

  24. Makara-Studzinska MT, Krys-Noszczyk KM, Jakiel G. Epidemiology of the symptoms of menopause - an intercontinental review. Przeglad Menopauzalny. 2014;13(3):203–11.

    PubMed  PubMed Central  Google Scholar 

  25. Cray LA, Woods NF, Herting JR, Mitchell ES. Symptom clusters during the late reproductive stage through the early postmenopause: observations from the Seattle Midlife Women’s Health Study. Menopause. 2012;19(8):864–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brinton RD, Gore AC, Schmidt PJ, Morrison JH. Reproductive aging of females: neural systems. Horm Brain Behav. 2009;4:2199–222.

    Article  CAS  Google Scholar 

  27. Santoro N, Sutton-Tyrrell K. The SWAN song: Study of Women’s Health Across the Nation’s recurring themes. Obstet Gynecol Clin N Am. 2011;38(3):417–23.

    Article  Google Scholar 

  28. Butler L, Santoro N. The reproductive endocrinology of the menopausal transition. Steroids. 2011;76(7):627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burger H, Woods NF, Dennerstein L, Alexander JL, Kotz K, Richardson G. Nomenclature and endocrinology of menopause and perimenopause. Expert Rev Neurother. 2007;7(11 Suppl):S35–43.

    Article  PubMed  Google Scholar 

  30. Tepper PG, Randolph JF Jr, McConnell DS, et al. Trajectory clustering of estradiol and follicle-stimulating hormone during the menopausal transition among women in the Study of Women’s Health across the Nation (SWAN). J Clin Endocrinol Metab. 2012;97(8):2872–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bastian LA, Smith CM, Nanda K. Is this woman perimenopausal? JAMA. 2003;289(7):895–902.

    Article  PubMed  Google Scholar 

  32. Avis NE, Stellato R, Crawford S, et al. Is there a menopausal syndrome? Menopausal status and symptoms across racial/ethnic groups. Soc Sci Med. 2001;52(3):345–56.

    Article  CAS  PubMed  Google Scholar 

  33. Finch CE, Felicio LS, Mobbs CV, Nelson JF. Ovarian and steroidal influences on neuroendocrine aging processes in female rodents. Endocr Rev. 1984;5(4):467–97.

    Article  CAS  PubMed  Google Scholar 

  34. Chen S, Nilsen J, Brinton RD. Dose and temporal pattern of estrogen exposure determines neuroprotective outcome in hippocampal neurons: therapeutic implications. Endocrinology. 2006;147(11):5303–13.

    Article  CAS  PubMed  Google Scholar 

  35. Mobbs CV, Gee DM, Finch CE. Reproductive senescence in female C57BL/6J mice: ovarian impairments and neuroendocrine impairments that are partially reversible and delayable by ovariectomy. Endocrinology. 1984;115(5):1653–62.

    Article  CAS  PubMed  Google Scholar 

  36. Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol. 1997;388(4):507–25.

    Article  CAS  PubMed  Google Scholar 

  37. O’Dowd BF, Nguyen T, Marchese A, et al. Discovery of three novel G-protein-coupled receptor genes. Genomics. 1998;47(2):310–3.

    Article  PubMed  Google Scholar 

  38. Brinton RD. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends Pharmacol Sci. 2009;30(4):212–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nilsson S, Koehler KF, Gustafsson JA. Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov. 2011;10(10):778–92.

    Article  CAS  PubMed  Google Scholar 

  40. Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7(12):715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suzuki H, Barros RP, Sugiyama N, et al. Involvement of estrogen receptor beta in maintenance of serotonergic neurons of the dorsal raphe. Mol Psychiatry. 2013;18(6):674–80.

    Article  CAS  PubMed  Google Scholar 

  42. Brailoiu E, Dun SL, Brailoiu GC, et al. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol. 2007;193(2):311–21.

    Article  CAS  PubMed  Google Scholar 

  43. Naugle MM, Nguyen LT, Merceron TK, et al. G-protein coupled estrogen receptor, estrogen receptor alpha, and progesterone receptor immunohistochemistry in the hypothalamus of aging female rhesus macaques given long-term estradiol treatment. J Exp Zool A Ecol Genet Physiol. 2014;321(7):399–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rainbow TC, Parsons B, MacLusky NJ, McEwen BS. Estradiol receptor levels in rat hypothalamic and limbic nuclei. J Neurosci. 1982;2(10):1439–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bethea CL, Mirkes SJ, Su A, Michelson D. Effects of oral estrogen, raloxifene and arzoxifene on gene expression in serotonin neurons of macaques. Psychoneuroendocrinology. 2002;27(4):431–45.

    Article  CAS  PubMed  Google Scholar 

  46. Maki PM. The timing of estrogen therapy after ovariectomy--implications for neurocognitive function. Nat Clin Pract Endocrinol Metab. 2008;4(9):494–5.

    Article  PubMed  Google Scholar 

  47. Brinton RD. The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci. 2008;31(10):529–37.

    Article  CAS  PubMed  Google Scholar 

  48. Rocca WA, Grossardt BR, Shuster LT. Oophorectomy, estrogen, and dementia: a 2014 update. Mol Cell Endocrinol. 2014;389(1–2):7–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brinton RD, Thompson RF, Foy MR, et al. Progesterone receptors: form and function in brain. Front Neuroendocrinol. 2008;29(2):313–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao L, Morgan TE, Mao Z, et al. Continuous versus cyclic progesterone exposure differentially regulates hippocampal gene expression and functional profiles. PLoS One. 2012;7(2):e31267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rasgon NL, Geist CL, Kenna HA, Wroolie TE, Williams KE, Silverman DH. Prospective randomized trial to assess effects of continuing hormone therapy on cerebral function in postmenopausal women at risk for dementia. PLoS One. 2014;9(3):e89095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Irwin RW, Yao J, To J, Hamilton RT, Cadenas E, Brinton RD. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J Neuroendocrinol. 2012;24(1):236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arnold S, Victor MB, Beyer C. Estrogen and the regulation of mitochondrial structure and function in the brain. J Steroid Biochem Mol Biol. 2012;131(1–2):2–9.

    Article  CAS  PubMed  Google Scholar 

  54. Milner TA, Ayoola K, Drake CT, et al. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J Comp Neurol. 2005;491(2):81–95.

    Article  CAS  PubMed  Google Scholar 

  55. Nilsen J, Irwin RW, Gallaher TK, Brinton RD. Estradiol in vivo regulation of brain mitochondrial proteome. J Neurosci. 2007;27(51):14069–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heldring N, Pike A, Andersson S, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87(3):905–31.

    Article  CAS  PubMed  Google Scholar 

  57. NCBI. Homo sapiens gene ESR1, encoding estrogen receptor 1. 2010. http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&term=ESR1&submit=Go.

  58. NCBI. Homo sapiens complex locus ESR2, encoding estrogen receptor 2 (ER beta). 2010.

    Google Scholar 

  59. Ishunina TA, Swaab DF. Age-dependent ERalpha MB1 splice variant expression in discrete areas of the human brain. Neurobiol Aging. 2008;29(8):1177–89.

    Article  CAS  PubMed  Google Scholar 

  60. Chung WC, Pak TR, Suzuki S, Pouliot WA, Andersen ME, Handa RJ. Detection and localization of an estrogen receptor beta splice variant protein (ERbeta2) in the adult female rat forebrain and midbrain regions. J Comp Neurol. 2007;505(3):249–67.

    Article  CAS  PubMed  Google Scholar 

  61. Wang JM, Hou X, Adeosun S, et al. A dominant negative ERbeta splice variant determines the effectiveness of early or late estrogen therapy after ovariectomy in rats. PLoS One. 2012;7(3):e33493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weiss G, Skurnick JH, Goldsmith LT, Santoro NF, Park SJ. Menopause and hypothalamic-pituitary sensitivity to estrogen. JAMA. 2004;292(24):2991–6.

    Article  CAS  PubMed  Google Scholar 

  63. Rettberg JR, Yao J, Brinton RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol. 2014;35(1):8–30.

    Article  CAS  PubMed  Google Scholar 

  64. Ding F, Yao J, Rettberg JR, Chen S, Brinton RD. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS One. 2013;8(11):e79977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yao J, Hamilton RT, Cadenas E, Brinton RD. Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim Biophys Acta. 2010;1800(10):1121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Simpkins JW, Yi KD, Yang SH, Dykens JA. Mitochondrial mechanisms of estrogen neuroprotection. Biochim Biophys Acta. 2010;1800(10):1113–20.

    Article  CAS  PubMed  Google Scholar 

  67. Yao J, Irwin R, Chen S, Hamilton R, Cadenas E, Brinton RD. Ovarian hormone loss induces bioenergetic deficits and mitochondrial beta-amyloid. Neurobiol Aging. 2012;33(8):1507–21.

    Article  CAS  PubMed  Google Scholar 

  68. Ding F, Yao J, Zhao L, Mao Z, Chen S, Brinton RD. Ovariectomy induces a shift in fuel availability and metabolism in the hippocampus of the female transgenic model of familial Alzheimer’s. PLoS One. 2013;8(3):e59825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mendez P, Wandosell F, Garcia-Segura LM. Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: cellular and molecular mechanisms. Front Neuroendocrinol. 2006;27(4):391–403.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao L, Mao Z, Chen S, Schneider LS, Brinton RD. Early intervention with an estrogen receptor beta-selective phytoestrogenic formulation prolongs survival, improves spatial recognition memory, and slows progression of amyloid pathology in a female mouse model of Alzheimer’s disease. J Alzheimers Dis. 2013;37(2):403–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cahill GF Jr. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1–22.

    Article  CAS  PubMed  Google Scholar 

  72. Yao J, Rettberg JR, Klosinski LP, Cadenas E, Brinton RD. Shift in brain metabolism in late onset Alzheimer’s disease: implications for biomarkers and therapeutic interventions. Mol Asp Med. 2011;32(4–6):247–57.

    Article  CAS  Google Scholar 

  73. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2009;106(34):14670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Santoro N. Symptoms of menopause: hot flushes. Clin Obstet Gynecol. 2008;51(3):539–48.

    Article  PubMed  Google Scholar 

  75. Freedman RR. Menopausal hot flashes: mechanisms, endocrinology, treatment. J Steroid Biochem Mol Biol. 2014;142:115–20.

    Article  CAS  PubMed  Google Scholar 

  76. Maki PM. Minireview: effects of different HT formulations on cognition. Endocrinology. 2012;153(8):3564–70.

    Article  CAS  PubMed  Google Scholar 

  77. Avis NE, Colvin A, Bromberger JT, et al. Change in health-related quality of life over the menopausal transition in a multiethnic cohort of middle-aged women: Study of Women’s Health Across the Nation. Menopause. 2009;16(5):860–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Freedman RR, Benton MD, Genik RJ II, Graydon FX. Cortical activation during menopausal hot flashes. Fertil Steril. 2006;85(3):674–8.

    Article  PubMed  Google Scholar 

  79. Simpkins JW, Katovich MJ, Millard WJ. Glucose modulation of skin temperature responses during morphine withdrawal in the rat. Psychopharmacology. 1990;102(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  80. Thurston RC, El Khoudary SR, Sutton-Tyrrell K, et al. Vasomotor symptoms and insulin resistance in the study of women’s health across the nation. J Clin Endocrinol Metab. 2012;97(10):3487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rasgon NL, Silverman D, Siddarth P, et al. Estrogen use and brain metabolic change in postmenopausal women. Neurobiol Aging. 2005;26(2):229–35.

    Article  CAS  PubMed  Google Scholar 

  82. Thurston RC, Chang Y, Mancuso P, Matthews KA. Adipokines, adiposity, and vasomotor symptoms during the menopause transition: findings from the Study of Women’s Health Across the Nation. Fertil Steril. 2013;100(3):793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Campbell IG, Bromberger JT, Buysse DJ, et al. Evaluation of the association of menopausal status with delta and beta EEG activity during sleep. Sleep. 2011;34(11):1561–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kravitz HM, Joffe H. Sleep during the perimenopause: a SWAN story. Obstet Gynecol Clin N Am. 2011;38(3):567–86.

    Article  Google Scholar 

  85. Wilson ME, Rosewell KL, Kashon ML, Shughrue PJ, Merchenthaler I, Wise PM. Age differentially influences estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) gene expression in specific regions of the rat brain. Mech Ageing Dev. 2002;123(6):593–601.

    Article  CAS  PubMed  Google Scholar 

  86. Yaffe K, Falvey CM, Hoang T. Connections between sleep and cognition in older adults. Lancet Neurol. 2014;13(10):1017–28.

    Article  PubMed  Google Scholar 

  87. Ju YE, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology--a bidirectional relationship. Nat Rev Neurol. 2014;10(2):115–9.

    Article  CAS  PubMed  Google Scholar 

  88. Maki PM, Resnick SM. Longitudinal effects of estrogen replacement therapy on PET cerebral blood flow and cognition. Neurobiol Aging. 2000;21(2):373–83.

    Article  CAS  PubMed  Google Scholar 

  89. Yee LT, Roe K, Courtney SM. Selective involvement of superior frontal cortex during working memory for shapes. J Neurophysiol. 2010;103(1):557–63.

    Article  PubMed  Google Scholar 

  90. Maki PM, Dennerstein L, Clark M, et al. Perimenopausal use of hormone therapy is associated with enhanced memory and hippocampal function later in life. Brain Res. 2011;1379:232–43.

    Article  CAS  PubMed  Google Scholar 

  91. Kenna H, Hoeft F, Kelley R, et al. Fasting plasma insulin and the default mode network in women at risk for Alzheimer’s disease. Neurobiol Aging. 2013;34(3):641–9.

    Article  CAS  PubMed  Google Scholar 

  92. Rasgon NL, Kenna HA, Wroolie TE, Williams KE, DeMuth BN, Silverman DH. Insulin resistance and medial prefrontal gyrus metabolism in women receiving hormone therapy. Psychiatry Res. 2014;223(1):28–36.

    Article  PubMed  Google Scholar 

  93. Mosconi L, Mistur R, Switalski R, et al. Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease. Neurology. 2009;72(6):513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rasgon NL, Kenna HA, Wroolie TE, et al. Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol Aging. 2011;32(11):1942–8.

    Article  CAS  PubMed  Google Scholar 

  95. Mosconi L, Murray J, Tsui WH, et al. Brain imaging of cognitively normal individuals with 2 parents affected by late-onset AD. Neurology. 2014;82(9):752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ryan J, Scali J, Carriere I, et al. Estrogen receptor alpha gene variants and major depressive episodes. J Affect Disord. 2012;136(3):1222–6.

    Article  CAS  PubMed  Google Scholar 

  97. Rasgon NL, Kenna HA, Geist C, Small G, Silverman D. Cerebral metabolic patterns in untreated postmenopausal women with major depressive disorder. Psychiatry Res. 2008;164(1):77–80.

    Article  CAS  PubMed  Google Scholar 

  98. Yaffe K, Tocco M, Petersen RC, et al. The epidemiology of Alzheimer’s disease: laying the foundation for drug design, conduct, and analysis of clinical trials. Alzheimers Dement. 2012;8(3):237–42.

    Article  PubMed  Google Scholar 

  99. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.

    Article  PubMed  Google Scholar 

  100. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013;80(19):1778–83.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Altmann A, Tian L, Henderson VW, Greicius MD. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75(4):563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health. 1998;88(9):1337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3(3):186–91.

    Article  PubMed  Google Scholar 

  104. Morrison JH, Brinton RD, Schmidt PJ, Gore AC. Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women. J Neurosci. 2006;26(41):10332–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Farrer LA, Cupples LA, van Duijn CM, et al. Apolipoprotein E genotype in patients with Alzheimer’s disease: implications for the risk of dementia among relatives. Ann Neurol. 1995;38(5):797–808.

    Article  CAS  PubMed  Google Scholar 

  106. Payami H, Zareparsi S, Montee KR, et al. Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. Am J Hum Genet. 1996;58(4):803–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry. 2005;62(6):685–91.

    Article  PubMed  Google Scholar 

  108. Alzheimer’s Association. 2014. Alzheimer’s Assoc facts_figures_2014.pdf. Chicago.

    Google Scholar 

  109. Christensen A, Pike CJ. Menopause, obesity and inflammation: interactive risk factors for Alzheimer’s disease. Front Aging Neurosci. 2015;7:130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Chen L, Liu R, Liu ZP, Li M, Aihara K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep. 2012;2:342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Diaz Brinton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Society of Gynecological Endocrinology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernandez, G.D., Brinton, R.D. (2019). The Neurological and Immunological Transitions of the Perimenopause: Implications for Postmenopausal Neurodegenerative Disease. In: Brinton, R., Genazzani, A., Simoncini, T., Stevenson, J. (eds) Sex Steroids' Effects on Brain, Heart and Vessels. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-030-11355-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11355-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11354-4

  • Online ISBN: 978-3-030-11355-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics