Gigantism and Acromegaly

  • Angeliki Makri
  • Maya LodishEmail author
Part of the Contemporary Endocrinology book series (COE)


Gigantism and acromegaly are rare clinical entities caused by growth hormone (GH) hypersecretion. Their main difference is the status of the epiphyseal growth plates at the time of the GH hypersecretion; gigantism occurs during childhood when growth plates are not yet fused, and acromegaly occurs after epiphyseal fusion. The most common cause of both gigantism and acromegaly is a benign GH-secreting pituitary tumor (somatotroph tumor) that occurs sporadically. However, both disorders can occur in the setting of known genetic syndromes, including familial isolated pituitary adenoma, X-linked acrogigantism, Carney complex, multiple endocrine neoplasia type 1, McCune-Albright syndrome, paraganglioma, pheochromocytoma and pituitary adenoma association, and neurofibromatosis type 1. Typical clinical features include coarse facial characteristics with frontal bossing and prognathism, excessive sweating, and enlargement of the hands and feet. Clinical manifestations can be broadly categorized into local effects from the pituitary tumor and systemic effects of the GH/IGF1 excess. Measurement of serum IGF-1 is the best screening test for gigantism and acromegaly. Diagnosis is confirmed by failure of suppression of GH to less than 1 μg/L after a standardized oral glucose load. The goal of treatment is to normalize GH secretion and correct clinical symptoms while preserving anterior pituitary function. Surgery is the first line of therapy for patients with a distinct pituitary micro- or macroadenoma. Medical treatment consists of three different classes of medications: somatostatin analogues, dopamine agonists, and growth hormone receptor antagonist. Radiotherapy may be used as an adjuvant therapy when surgery and medical therapy are unsuccessful.


Gigantism Acromegaly Pituitary Growth hormone Insulin-like growth factor 1 


  1. 1.
    Lodish MB, Trivellin G, Stratakis CA. Pituitary gigantism. Curr Opin Endocrinol Diabetes Obes. 2016;23(1):72–80.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Pandey P, Ojha BK, Mahapatra AK. Pediatric pituitary adenoma: a series of 42 patients. J Clin Neurosci. 2005;12(2):124–7.PubMedGoogle Scholar
  3. 3.
    Cannavo S, Venturino M, Curto L, De Menis E, D’Arrigo C, Tita P, et al. Clinical presentation and outcome of pituitary adenomas in teenagers. Clin Endocrinol. 2003;58(4):519–27.Google Scholar
  4. 4.
    Ayuk J. Growth hormone and its disorders. Postgrad Med J. 2006;82(963):24–30.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Brooks AJ, Waters MJ. The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol. 2010;6(9):515–25.PubMedGoogle Scholar
  6. 6.
    Lanning NJ, Carter-Su C. Recent advances in growth hormone signaling. Rev Endocr Metab Disord. 2007;7(4):225–35.Google Scholar
  7. 7.
    Waters MJ, Shang CA, Behncken SN, Tam SP, Li H, Shen B, et al. Growth hormone as a cytokine. Clin Exp Pharmacol Physiol. 1999;26(10):760–4.PubMedGoogle Scholar
  8. 8.
    Cunningham B, Ultsch M, De Vos A, Mulkerrin M, Clauser K, Wells J. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science. 1991;254(5033):821–5.PubMedGoogle Scholar
  9. 9.
    Argetsinger LS, Carter-Su C. Mechanism of signaling by growth hormone receptor. Physiol Rev. 1996;76(4):1089–107.PubMedGoogle Scholar
  10. 10.
    Le Roith D, Bondy C, Yakar S, Liu J-L, Butler A. The somatomedin hypothesis: 2001. Endocr Rev. 2001;22(1):53–74.PubMedGoogle Scholar
  11. 11.
    Daughaday WH, Hall K, Raben MS, Salmon WD, Leo Van Den Brande J, Van Wyk JJ. Somatomedin: proposed designation for sulphation factor. Nature. 1972;235(5333):107.PubMedGoogle Scholar
  12. 12.
    Hannah-Shmouni F, Trivellin G, Stratakis CA. Genetics of gigantism and acromegaly. Growth Horm IGF Res. 2016;30–31:37–41.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Eugster E. Gigantism. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth:, Inc.; 2000.Google Scholar
  14. 14.
    Sotos JF. Overgrowth. Clin Pediatr. 1996;35(11):577–90.Google Scholar
  15. 15.
    Melmed S. Acromegaly. N Engl J Med. 1990;322(14):966–77.PubMedGoogle Scholar
  16. 16.
    Felix IA, Horvath E, Kovacs K, Smyth HS, Killinger DW, Vale J. Mammosomatotroph adenoma of the pituitary associated with gigantism and hyperprolactinemia. A morphological study including immunoelectron microscopy. Acta Neuropathol. 1986;71(1–2):76–82.PubMedGoogle Scholar
  17. 17.
    Dubuis JM, Deal CL, Drews RT, Goodyer CG, Lagacé G, Asa SL, et al. Mammosomatotroph adenoma causing gigantism in an 8-year old boy: a possible pathogenetic mechanism. Clin Endocrinol. 1995;42(5):539–49.Google Scholar
  18. 18.
    Zimmerman D. Congenital gigantism due to growth hormone-releasing hormone excess and pituitary hyperplasia with adenomatous transformation. J Clin Endocrinol Metab. 1993;76(1):216–22.PubMedGoogle Scholar
  19. 19.
    Asa SL, Scheithauer BW, Bilbao JM, Horvath EVA, Ryan N, Kovacs K, et al. A case for hypothalamic acromegaly: a clinicopathological study of six patients with hypothalamic gangliocytomas producing growth hormone-releasing factor*. J Clin Endocrinol Metabol. 1984;58(5):796–803.Google Scholar
  20. 20.
    Ghazi AA, Amirbaigloo A, Dezfooli AA, Saadat N, Ghazi S, Pourafkari M, et al. Ectopic acromegaly due to growth hormone releasing hormone. Endocrine. 2012;43(2):293–302.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Vierimaa O. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science. 2006;312(5777):1228–30.PubMedGoogle Scholar
  22. 22.
    Leontiou CA, Gueorguiev M, van der Spuy J, Quinton R, Lolli F, Hassan S, et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab. 2008;93(6):2390–401.PubMedGoogle Scholar
  23. 23.
    Trivellin G, Daly AF, Faucz FR, Yuan B, Rostomyan L, Larco DO, et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med. 2014;371(25):2363–74.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Daly AF, Lysy PA, Desfilles C, Rostomyan L, Mohamed A, Caberg J-H, et al. GHRH excess and blockade in X-LAG syndrome. Endocr Relat Cancer. 2015;23(3):161–70.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine. 1985;64(4):270–83.PubMedGoogle Scholar
  26. 26.
    Stratakis CA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86(9):4041–6.PubMedGoogle Scholar
  27. 27.
    Beckers A, Lodish MB, Trivellin G, Rostomyan L, Lee M, Faucz FR, et al. X-linked acrogigantism syndrome: clinical profile and therapeutic responses. Endocr Relat Cancer. 2015;22(3):353–67.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Agarwal S. Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet. 1997;6(7):1169–75.PubMedGoogle Scholar
  29. 29.
    Mutch MG, Dilley WG, Sanjurjo F, DeBenedetti MK, Doherty GM, Wells SA, et al. Germline mutations in the multiple endocrine neoplasia type 1 gene: evidence for frequent splicing defects. Hum Mutat. 1999;13(3):175–85.PubMedGoogle Scholar
  30. 30.
    Thakker RV, Newey PJ, Walls GV, Bilezikian J, Dralle H, Ebeling PR, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metabol. 2012;97(9):2990–3011.Google Scholar
  31. 31.
    Brandi ML. CONSENSUS: guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001;86(12):5658–71.PubMedGoogle Scholar
  32. 32.
    Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med. 1991;325(24):1688–95.PubMedGoogle Scholar
  33. 33.
    Lumbroso S, Paris F, Sultan C. McCune-Albright syndrome: molecular genetics. J Pediatr Endocrinol Metabol. 2002;15(Suppl 3):875–82.Google Scholar
  34. 34.
    Vortmeyer AO, Gläsker S, Mehta GU, Abu-Asab MS, Smith JH, Zhuang Z, et al. SomaticGNASMutation causes widespread and diffuse pituitary disease in acromegalic patients with McCune-Albright syndrome. J Clin Endocrinol Metabol. 2012;97(7):2404–13.Google Scholar
  35. 35.
    Akintoye SO, Chebli C, Booher S, Feuillan P, Kushner H, Leroith D, et al. Characterization ofgsp-mediated growth hormone excess in the context of McCune-Albright syndrome. J Clin Endocrinol Metabol. 2002;87(11):5104–12.Google Scholar
  36. 36.
    Collins MT, Singer FR, Eugster E. McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia. Orphanet J Rare Dis. 2012;7(Suppl 1):S4.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Xekouki P, Szarek E, Bullova P, Giubellino A, Quezado M, Mastroyannis SA, et al. Pituitary adenoma with Paraganglioma/Pheochromocytoma (3PAs) and succinate dehydrogenase defects in humans and mice. J Clin Endocrinol Metabol. 2015;100(5):E710–E9.Google Scholar
  38. 38.
    Costin G, Fefferman RA, Kogut MD. Hypothalamic gigantism. J Pediatr. 1973;83(3):419–25.PubMedGoogle Scholar
  39. 39.
    Drimmie FM, Maclennan AC, Nicoll JAR, Simpson E, McNeill E, Donaldson MDC. Gigantism due to growth hormone excess in a boy with optic glioma. Clin Endocrinol. 2000;53(4):535–8.Google Scholar
  40. 40.
    Josefson J, Listernick R, Fangusaro JR, Charrow J, Habiby R. Growth hormone excess in children with neurofibromatosis type 1-associated and sporadic optic pathway tumors. J Pediatr. 2011;158(3):433–6.PubMedGoogle Scholar
  41. 41.
    Rostomyan L, Daly AF, Petrossians P, Nachev E, Lila AR, Lecoq AL, et al. Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocr Relat Cancer. 2015;22(5):745–57.PubMedGoogle Scholar
  42. 42.
    Daughaday WH. Pituitary gigantism. Endocrinol Metab Clin N Am. 1992;21(3):633–47.Google Scholar
  43. 43.
    Rostomyan L, Daly AF, Beckers A. Pituitary gigantism: causes and clinical characteristics. Ann Endocrinol. 2015;76(6):643–9.Google Scholar
  44. 44.
    Blumberg D, Sklar C, Bell J, David R. Acromegaly presenting in infancy. Pediatric Res. 1987;21(4):244A.Google Scholar
  45. 45.
    Gelber SJ, Heffez DS, Donohoue PA. Pituitary gigantism caused by growth hormone excess from infancy. J Pediatr. 1992;120(6):931–4.PubMedGoogle Scholar
  46. 46.
    Lugo G, Pena L, Cordido F. Clinical manifestations and diagnosis of acromegaly. Int J Endocrinol. 2012;2012:1–10.Google Scholar
  47. 47.
    Katznelson L, Laws ER, Melmed S, Molitch ME, Murad MH, Utz A, et al. Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metabol. 2014;99(11):3933–51.Google Scholar
  48. 48.
    Ezzat S, Forster MJ, Berchtold P, Redelmeier DA, Boerlin V, Harris AG. Acromegaly. Medicine. 1994;73(5):233–40.PubMedGoogle Scholar
  49. 49.
    Vilar L, Vilar CF, Lyra R, Lyra R, Naves LA. Acromegaly: clinical features at diagnosis. Pituitary. 2016;20(1):22–32.Google Scholar
  50. 50.
    Chanson P, Salenave S. Acromegaly. Orphanet J Rare Dis. 2008;3(1):17.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Thorner M, Vance ML, Laws E, Horvath E, Kovacs K. The anterior pituitary. In:Williams Textbook of Endocrinology. 9th ed. Philadelphia: Elseiver; 1998. p. 295–306.Google Scholar
  52. 52.
    Vilar L, Fleseriu M, Bronstein MD. Challenges and pitfalls in the diagnosis of hyperprolactinemia. Arq. Bras. Endocrinol. Metabol. 2014;58(1):9–22.PubMedGoogle Scholar
  53. 53.
    Colao A, Ferone D, Marzullo P, Lombardi G. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev. 2004;25(1):102–52.PubMedGoogle Scholar
  54. 54.
    Capatina C, Wass JAH. 60 YEARS OF NEUROENDOCRINOLOGY: acromegaly. J Endocrinol. 2015;226(2):T141–T60.PubMedGoogle Scholar
  55. 55.
    Wolinski K, Czarnywojtek A, Ruchala M. Risk of thyroid nodular disease and thyroid cancer in patients with acromegaly – meta-analysis and systematic review. PLoS One. 2014;9(2):e88787.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Barkan AL, Beitins IZ, Kelch RP. Plasma insulin-like growth factor-I/somatomedin-C in acromegaly: correlation with the degree of growth hormone hypersecretion*. J Clin Endocrinol Metabol. 1988;67(1):69–73.Google Scholar
  57. 57.
    Barkan AL, Stred SE, Reno K, Markovs M, Hopwood NJ, Kelch RP, et al. Increased growth hormone pulse frequency in acromegaly*. J Clin Endocrinol Metabol. 1989;69(6):1225–33.Google Scholar
  58. 58.
    Caregaro L, Favaro A, Santonastaso P, Alberino F, Di Pascoli L, Nardi M, et al. Insulin-like growth factor 1 (IGF-1), a nutritional marker in patients with eating disorders. Clin Nutr. 2001;20(3):251–7.PubMedGoogle Scholar
  59. 59.
    Clayton KL, Holly JMP, Carlsson LMS, Jones J, Cheetham TD, Taylor AM, et al. Loss of the normal relationships between growth hormone, growth hormone-binding protein and insulin-like growth factor-I in adolescents with insulin-dependent diabetes mellitus. Clin Endocrinol. 1994;41(4):517–24.Google Scholar
  60. 60.
    Pokrajac A, Wark G, Ellis AR, Wear J, Wieringa GE, Trainer PJ. Variation in GH and IGF-I assays limits the applicability of international consensus criteria to local practice. Clin Endocrinol. 2007;67(1):65–70.Google Scholar
  61. 61.
    Giustina A, Chanson P, Bronstein MD, Klibanski A, Lamberts S, Casanueva FF, et al. A consensus on criteria for cure of acromegaly. J Clin Endocrinol Metabol. 2010;95(7):3141–8.Google Scholar
  62. 62.
    Melmed S, Casanueva FF, Klibanski A, Bronstein MD, Chanson P, Lamberts SW, et al. A consensus on the diagnosis and treatment of acromegaly complications. Pituitary. 2012;16(3):294–302.PubMedCentralGoogle Scholar
  63. 63.
    Misra M, Cord J, Prabhakaran R, Miller KK, Klibanski A. Growth hormone suppression after an oral glucose load in children. J Clin Endocrinol Metabol. 2007;92(12):4623–9.Google Scholar
  64. 64.
    Arafat AM, Mohlig M, Weickert MO, Perschel FH, Purschwitz J, Spranger J, et al. Growth hormone response during oral glucose tolerance test: the impact of assay method on the estimation of reference values in patients with acromegaly and in healthy controls, and the role of gender, age, and body mass index. J Clin Endocrinol Metab. 2008;93(4):1254–62.PubMedGoogle Scholar
  65. 65.
    Famini P, Maya MM, Melmed S. Pituitary magnetic resonance imaging for sellar and parasellar masses: ten-year experience in 2598 patients. J Clin Endocrinol Metabol. 2011;96(6):1633–41.Google Scholar
  66. 66.
    Jane JA, Starke RM, Elzoghby MA, Reames DL, Payne SC, Thorner MO, et al. Endoscopic transsphenoidal surgery for acromegaly: remission using modern criteria, complications, and predictors of outcome. J Clin Endocrinol Metabol. 2011;96(9):2732–40.Google Scholar
  67. 67.
    Swearingen B. Long-term mortality after transsphenoidal surgery and adjunctive therapy for acromegaly. J Clin Endocrinol Metabol. 1998;83(10):3419–26.Google Scholar
  68. 68.
    Laws ER, Thapar K. Pituitary surgery. Endocrinol Metab Clin N Am. 1999;28(1):119–31.Google Scholar
  69. 69.
    Katznelson L, Atkinson J, Cook D, Ezzat S, Hamrahian A, Miller K. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly-2011 update. Endocr Pract. 2011;17(Supplement 4):1–44.PubMedGoogle Scholar
  70. 70.
    Liu F, Li W, Yao Y, Li G, Yang Y, Dou W, et al. A case of McCune-Albright syndrome associated with pituitary GH adenoma: therapeutic process and autopsy. J Pediatr Endocrinol Metab. 2011;24(5–6):283–7.PubMedGoogle Scholar
  71. 71.
    Tuvia S, Atsmon J, Teichman SL, Katz S, Salama P, Pelled D, et al. Oral octreotide absorption in human subjects: comparable pharmacokinetics to parenteral octreotide and effective growth hormone suppression. J Clin Endocrinol Metabol. 2012;97(7):2362–9.Google Scholar
  72. 72.
    Tajima T, Tsubaki J, Ishizu K, Jo W, Ishi N, Fujieda K. Case study of a 15-year-old boy with McCune-Albright syndrome combined with pituitary gigantism: effect of octreotide-long acting release (LAR) and cabergoline therapy. Endocr J. 2008;55(3):595–9.PubMedGoogle Scholar
  73. 73.
    Kopchick JJ, Parkinson C, Stevens EC, Trainer PJ. Growth hormone receptor antagonists: discovery, development, and use in patients with acromegaly. Endocr Rev. 2002;23(5):623–46.PubMedGoogle Scholar
  74. 74.
    Katznelson L. Pegvisomant for the treatment of acromegaly—translation of clinical trials into clinical practice. Nat Clin Pract Endocrinol Metab. 2007;3(7):514–5.PubMedGoogle Scholar
  75. 75.
    Trainer PJ, Drake WM, Katznelson L, Freda PU, Herman-Bonert V, van der Lely AJ, et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med. 2000;342(16):1171–7.PubMedGoogle Scholar
  76. 76.
    Main KM, Sehested A, Feldt-Rasmussen U. Pegvisomant treatment in a 4-year-old girl with neurofibromatosis type 1. Horm Res Paediatr. 2006;65(1):1–5.Google Scholar
  77. 77.
    Rix M, Laurberg P, Hoejberg AS, Brock-Jacobsen B. Pegvisomant therapy in pituitary gigantism: successful treatment in a 12-year-old girl. Eur J Endocrinol. 2005;153(2):195–201.PubMedGoogle Scholar
  78. 78.
    Bergamaschi S, Ronchi CL, Giavoli C, Ferrante E, Verrua E, Ferrari DI, et al. Eight-year follow-up of a child with a GH/prolactin-secreting adenoma: efficacy of pegvisomant therapy. Horm Res Paediatr. 2010;73(1):74–9.PubMedGoogle Scholar
  79. 79.
    van der Lely AJ, Biller BMK, Brue T, Buchfelder M, Ghigo E, Gomez R, et al. Long-term safety of pegvisomant in patients with acromegaly: comprehensive review of 1288 subjects in ACROSTUDY. J Clin Endocrinol Metabol. 2012;97(5):1589–97.Google Scholar
  80. 80.
    Marazuela M, Paniagua AE, Gahete MD, Lucas T, Alvarez-Escolá C, Manzanares R, et al. Somatotroph tumor progression during pegvisomant therapy: a clinical and molecular study. J Clin Endocrinol Metabol. 2011;96(2):E251–E9.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of HealthBethesdaUSA
  2. 2.Division of Pediatric EndocrinologyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations