Estimation of the Angular Positioning Inaccuracy in Avionics Helmet-Mounted Cueing Systems with Magnetic Method

  • Andrzej Szelmanowski
  • Mariusz Zieja
  • Andrzej PazurEmail author
  • Paweł Janik
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 548)


The paper presents methods for estimating the inaccuracy of determining the angular position of the pilot’s helmet dedicated to the NSC-1 Orion helmet-mounted cueing system with a magnetic method, intended for the W-3PL Głuszec multi-purpose helicopter with integrated avionics system ZSA. A flat coil with two separated rings, which generates a magnetic field with a curved profile from the axis of symmetry, developed in the Polish Air Force Institute of Technology (AFIT), was presented. The magnetic field curvature causing errors of determining the angular position of the pilot’s helmet in relation to the aircraft cabin reference frame was described with the use of relationships formulated for the flat coil with two separated rings (inner and outer). The inaccuracies determined on the basis of computer simulations of the developed mathematical relationships were compared with experimental data obtained from the magnetic field measurements using the integrated ADIS 16405 triaxial sensor (with a measurement resolution of 0.5 mgauss/LSB). In order to improve the accuracy of determining the angular position, an original algorithm for specifying linear deviations of the pilot’s helmet from its neutral position, determined during the adjustment process of the helmet (located on the axis of symmetry of the flat coil) was used. It allowed to determine the current curvature of the generated magnetic field and to make corrections.


Avionics Helmet-mounted cueing systems Errors of the angular positioning Magnetic field measurement Flat coil profile modeling 


  1. 1.
    ADIS 16405, Analog Devices, Triaxial Inertial Sensor with Magnetometer, datasheet.
  2. 2.
    Boniol, F.: New challenges for future avionic architectures. In: Amine, A., Otmane, A., Bellatreche, L. (eds.) Modeling Approaches and Algorithms for Advanced Computer Applications. Studies in Computational Intelligence, vol. 488. Springer, Cham (2013)Google Scholar
  3. 3.
    Chu, Y.: Numerical calculation for the magnetic field in current-carrying circular arc filament. IEEE Trans. Magn. 34 (1998)Google Scholar
  4. 4.
    Collinson, R.P.G.: Introduction to Avionics. Springer, Dordrecht (2011)CrossRefGoogle Scholar
  5. 5.
    COSMOL Multiphysics® Modeling Software.
  6. 6.
    Furlani, E.P.: The field analysis and simulation of a permanent-magnet bias-field device for magneto-optic recording. J. Phys. D Appl. Phys. 30 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    IEEE Sens. J. Adv. Magn. Field Sens. 10(6) (2010)Google Scholar
  8. 8.
    Jackson, J.D.: Classical Electrodynamics, 3rd Edn. Wiley (1998)Google Scholar
  9. 9.
    Simpson, J.C.: Simple analyctic expressions for the magnetic field od a circular current loop, NASA/TM-2013-217919. NASA, Kennedy Space Center, Florida (2001)Google Scholar
  10. 10.
    Selvaggi, J.P.: Multipole analysis of circular cylindrical magnetic systems. Rensselaer Polytechnic Institute, Troy, New York (2005)CrossRefGoogle Scholar
  11. 11.
    Selvaggi, J.P., Salon, S., Kwon, O.-M Chari, M.V.K: Calculating the external magnetic field from permanent magnets in permanent-magnet motors-an alternative method. IEEE Trans. Magn. 40(5) (2004)CrossRefGoogle Scholar
  12. 12.
    Conway, J.T.: Exact solutions for the magnetic fields of axisymmetric solenoids and current distributions. IEEE Trans. Magn. 37(4) (2001)CrossRefGoogle Scholar
  13. 13.
    Kildishev, A.V.: Multipole analysis of an elongated magnetic source by a cylindrical sensor array. IEEE Trans. Magn. 38(5) (2002)CrossRefGoogle Scholar
  14. 14.
    Knoepfel, H.E.: Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use. A Wiley-Interscience Publication, Toronto (2000)CrossRefGoogle Scholar
  15. 15.
    Lewitowicz, J., Szelmanowski, A., Pazur, A., Michalak, S., Janik, P.: Helmet-mounted display and cueing systems as pilot aids for aviation/maritime search and rescue missions. Sci. J. Marit. Univ. Szczec. 52(124) (2017)Google Scholar
  16. 16.
    Schill, R.A.: General relation for the vector magnetic field of a circular current loop: a closer look. IEEE Trans. Magn. 39(2) (2003)CrossRefGoogle Scholar
  17. 17.
    Rash, C.: Helmet displays in aviation. Helmet mounted display. Design Issues for Rotary-Wing Aircraft, USA, Fort Rucker (2009)Google Scholar
  18. 18.
    Raab, R.E., De Lange, O.L.: Multipole Theory in Electromagnetism-Classical, Quantum, and Symmetry Aspects, with Applications. Oxford University Press (2005)Google Scholar
  19. 19.
    Sarma, K.R., Grothe, S., Gannon, A.: Avionics displays. In: Chen, J., Cranton, W., Fihn, M. (eds.) Handbook of Visual Display Technology. Springer, Cham (2016)Google Scholar
  20. 20.
    Szelmanowski, A.: Helmet-mounted cueing system for military helicopters with avionic integrated system, AFIT, monography, ISBN 978-83-61021-76-6, Warsaw (2013)Google Scholar
  21. 21.
    Szelmanowski, A., Janik, P., Sobielarski, M.: Possibilities of new technologies implementation in helmet-mounted cueing and display systems for Polish military helicopters. J. KONES Powertrain Transp. 23(4) (2016)Google Scholar
  22. 22.
    Szelmanowski, A., Michalak, S., Witos, M., Pazur, A., Janik, P., Paterek, W., Gaj, A., Bulikowska, J.: Magnetic field sensors overview and example application in helmet mounted cueing system. In: 2nd IEEE Conference on Advances In Magnetics, La Thuile, Italy, Febuary, pp. 4–7 (2018)Google Scholar
  23. 23.
    Uchiyama, et al.: IEEE Trans. Magn. 48(11), 3833–3839 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrzej Szelmanowski
    • 1
  • Mariusz Zieja
    • 1
  • Andrzej Pazur
    • 1
    Email author
  • Paweł Janik
    • 1
  1. 1.Air Force Institute of TechnologyWarsawPoland

Personalised recommendations