Skip to main content

Nitric Oxide and Hydrogen Peroxide in Plant Response to Biotic Stress

  • Chapter
  • First Online:
Book cover Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants

Abstract

NO and H2O2 act as key regulators in a broad range of physiological processes in algae and higher plants. A large amount of research highlights multiple roles for NO/H2O2 in plant defence. They function as protectants but also as signaling molecules that mediate various metabolic processes and activate further systematic plant defence reactions through the regulation of genes involved in pathogen defence. This chapter summarises the current knowledge on NO and H2O2 necessity in plant cell resistance response to biotic stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostoni M, Montgomery BL (2014) Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes. Life 4:745–769

    Article  PubMed  PubMed Central  Google Scholar 

  • Alamillo JM, Garcia-Olmedo F (2001) Effects of urate, a natural inhibitor of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. Plant J 125:529–540

    Article  Google Scholar 

  • An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825

    Article  CAS  PubMed  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:390–1406

    Article  CAS  Google Scholar 

  • Astier J, Gross I, Durner J (2018a) Nitric oxide production in plants: an update. J Exp Bot 69:3401–3411

    PubMed  Google Scholar 

  • Astier J, Jeandroz S, Wendehenne D (2018b) Nitric oxide synthase in plants: the surprise from algae. Plant Sci 268:64–66

    Article  CAS  PubMed  Google Scholar 

  • Barrington DJ, Ghadouani A (2008) Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environ Sci Technol 42:8916–8921

    Article  CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Pérez MO, Leterrier M, Corpas FJ, Barroso JB (2014) Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant Cell Physiol 55:1080–1095

    Article  CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama RP, Adilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66:5983–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  CAS  PubMed  Google Scholar 

  • Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant Microb Interact 26:271–277

    Article  CAS  Google Scholar 

  • Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bickerton P, Sello S, Brownlee C, Pittman JK, Wheeler GL (2016) Spatial and temporal specificity of Ca2+ signalling in Chlamydomonas reinhardtii in response to osmotic stress. New Phytol 212:920–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieker S, Riester L, Stahl M, Franzaring J, Zentgraf U (2012) Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart. J Integr Plant Biol 54:540–554

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP (1999) Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol 2:287–294

    Article  CAS  PubMed  Google Scholar 

  • Boscari A, Del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A (2013) Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? Plant Physiol 161:425–439

    Article  CAS  PubMed  Google Scholar 

  • Box A, Sureda A, Terrados J, Pons A, Deudero S (2008) Antioxidant response and caulerpenyne production of the alien Caulerpa taxifolia (Vahl) epiphytized by the invasive algae Lophocladia lallemandii (Montagne). J Exp Mar Biol Ecol 364:24–28

    Article  CAS  Google Scholar 

  • Çakır B, Kılıçkaya O (2015) Mitogen-activated protein kinase cascades in Vitis vinifera. Front Plant Sci 6:556

    Article  PubMed  PubMed Central  Google Scholar 

  • Camejo D, Ortiz-Espin A, Lazaro JJ, Romero-Puertas MC, Lazaro-Payo A, Sevilla F, Jiménez A (2015) Functional and structural changes in plant mitochondrial PrxII F caused by NO. J Protom 119:112–125

    Article  CAS  Google Scholar 

  • Cevahir G, Aytamka E, Erol Ç (2007) The role of nitric oxide in plants. Biotechnol Biotechnol Equip 21:13–17

    Article  CAS  Google Scholar 

  • Chardin C, Schenk ST, Hirt H, Colcombet J, Krapp A (2017) Review: Mitogen-activated protein kinases in nutritional signaling in Arabidopsis. Plant Sci 260:101–108

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Fluhr R (2018) Singlet oxygen plays an essential role in the root’s response to osmotic stress. Plant Physiol 177:1717–1727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant Microb Int 23:558–565

    Article  CAS  Google Scholar 

  • Chung CC, Hwang SPL, Chang J (2008) Nitric oxide as a signaling factor to upregulate the death-specific protein in a marine diatom, Skeletonema costatum, during blockage of electron flow in photosynthesis. Appl Environ Microbiol 74:6521–6527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cona A, Rea G, Botta M, Corelli F, Federico R, Angelini R (2006) Flavin-containing polyamine oxidase is a hydrogen peroxide source in the oxidative response to the protein phosphatase inhibitor cantharidin in Zea mays L. J Exp Bot 57:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2013) Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol 199:633–635

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Lett 588:2049–2054

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2015) Functions of nitric oxide (NO) in roots during development and under adverse stress conditions. Plants 4:240–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Palma JM (2018) Assessing nitric oxide (NO) in higher plants: an outline. Nitrogen 1:12–20

    Article  Google Scholar 

  • Corpas FJ, Carreras A, Valderrama R, Chaki M, Palma JM, del Río LA, Barroso JB (2007) Reactive nitrogen species and nitrosative stress in plants. Plant Stress 1:37–41

    Google Scholar 

  • Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Darehshouri A, Lütz-Meindl U (2010) H2O2 localization in the green alga Micrasterias after salt and osmotic stress by TEM-coupled electron energy loss spectroscopy. Protoplasma 239:49–56

    Article  CAS  PubMed  Google Scholar 

  • de Pinto MC, Tomassi F, de Gara L (2002) Changes in the antioxidant systems as a part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiol 130:689–708

    Article  CAS  Google Scholar 

  • de Pinto MC, Locato V, Sgobba A, Romero-Puertas M d C, Gadaleta C, Delledonne M, De Gara L (2013) S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiol 163:1766–1775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidchik V, Maathuis F, Voitsekhovskaja O (2018) Unravelling the plant signalling machinery: An update on the cellular and genetic basis of plant signal transduction. Funct Plant Biol 45:1–8

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330:115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrikova AG (2017) Signaling molecules in plants: exogenous application. Acta Sci Agri 1:38–41

    Google Scholar 

  • Domingos P, Prado AM, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: A multitasked signaling gas in plants. Mol Plant 8:506–520

    Article  CAS  PubMed  Google Scholar 

  • Dubovskaya LV, Bakakina YS, Kolesneva EV, Sodel DL, McAinsh MR, Hetherington AM, Volotovski ID (2011) cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytol 191:57–69

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espunya MC, De MRG-CA, Martinez M (2012) S-nitrosoglutathione is a component of wound- and salicylic acid induced systemic responses in Arabidopsis thaliana. J Exp Bot 63:3219–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic Stress. Front Plant Sci 7:471

    Article  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira LC, Cataneo AC (2010) Nitric oxide in plants: A brief discussion on this multifunctional molecule. Sci Agric (Piracicaba Braz) 67:236–243

    Article  CAS  Google Scholar 

  • Foissner ID, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  CAS  PubMed  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404

    Article  PubMed  CAS  Google Scholar 

  • Gadjev I, Stone JM, Gechev TS (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol 270:87–144

    Article  CAS  PubMed  Google Scholar 

  • Galatro A, Puntarulo S (2014) An update to the understanding of nitric oxide metabolism in plants. In: Khan MN, Mobin M, Mohammad F, Corpas JF (eds) Nitric oxide in plants: metabolism and role in stress physiology. Springer, Basel, pp 3–16

    Chapter  Google Scholar 

  • Ganini D, Hollnagel HC, Colepicolo P, Barros MP (2013) Hydrogen peroxide and nitric oxide trigger redox-related cyst formation in cultures of the dinoflagellate Lingulodinium polyedrum. Harmful Algae 27:121–129

    Article  CAS  Google Scholar 

  • García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  Google Scholar 

  • Garcia-Olmedo F, Rodrigguez-Palenzulea P, Molina A, Alamillo JM, Lopez-Solanilla E, Berrocal-Lobo M, Poza-Carrion C (2001) Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Lett 489:219–222

    Article  Google Scholar 

  • Gehring C, Turek IS (2017) Cyclic nucleotide monophosphates and their cyclases in plant signaling. Front Plant Sci 8:1704

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • González A, de los Ángeles Cabrera M, Henríquez MJ, Contreras RA, Morales B, Moenne A (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158:1451–1462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Górka B, Wieczorek PP (2017) Simultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDA. J Chromatogr B Analyt Technol Biomed Life Sci 1057:32–39

    Article  PubMed  CAS  Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419:64–77

    Article  CAS  PubMed  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011a) On the origins of nitric oxide. Trend Plant Sci 16:160–168

    Article  CAS  Google Scholar 

  • Gupta KJ, Igamberdiev AU, Manjunatha G, Segu S, Moran JF, Neelawarne B, Bauwe H, Kaiser WM (2011b) The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Sci 181:520–526

    Article  CAS  PubMed  Google Scholar 

  • Habibi G (2014) Hydrogen peroxide (H2O2) generation, scavenging and signaling in plants. In: Ahmad P (ed) Oxidative damage to plants: antioxidant networks and signaling. Academic, San Diego, pp 557–584

    Chapter  Google Scholar 

  • Hancock JT (2018) Hydrogen sulfide and environmental stresses. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2018.08.034

  • Hao X, Yu K, Ma Q, Song X, Li H, Wang M (2011) Histochemical studies on the accumulation of H2O2 and hypersensitive cell death in the nonhost resistance of pepper against Blumeria graminis f. sp. tritici. Physiol Mol Plant Pathol 76:104–111

    Article  CAS  Google Scholar 

  • Hettenhausen C, Schuman MC, Wu J (2015) MAPK signalling: a key element in plant defense response to insects. Insect Sci 22:157–164

    Article  CAS  PubMed  Google Scholar 

  • Holzmeister C, Gaupels F, Geerlof A, Sarioglu H, Sattler M, Durner J, Lindermayr C (2015) Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J Exp Bot 66:989–999

    Article  CAS  PubMed  Google Scholar 

  • Hong JK, Kang SR, Kim YH, Yoon DJ, Kim DH, Kim HJ, Sung CH, Kang HS, Choi CW, Kim DH, Kim YS (2013) Hydrogen peroxide- and nitric oxide-mediated disease control of bacterial wilt in tomato plants. Plant Pathol J 29:386–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H (2012) Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res 125:147–153

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Yang J, Li C (2015) Transcriptomic response to nitric oxide treatment in Larix olgensis Henry. Int J Mol Sci 16:28582–28597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trend Plant Sci 27:301–308

    Google Scholar 

  • Imran QM, Hussain A, Lee SU, Mun BG, Falak N, Loake GJ, Yun BW (2018) Transcriptome profile of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple biological processes. Sci Rep 8:771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ismail SZ, Khandaker MM, Mat N, Boyce AN (2015) Effects of hydrogen peroxide on growth, development and quality of fruits: a review. J Agron 14:331–336

    Article  CAS  Google Scholar 

  • Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutilier K, Baillieul F, Clément C (2009) Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta 229:393–402

    Article  CAS  PubMed  Google Scholar 

  • Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GKS, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci Signal 9:re2

    Article  PubMed  CAS  Google Scholar 

  • Kaurilind E, Xu E, Brosché M (2015) A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genom 16:837

    Article  CAS  Google Scholar 

  • Keshavarz-Tohid V, Taheri P, Taghavi SM, Tarighi S (2016) The role of nitric oxide in basal and induced resistance in relation with hydrogen peroxide and antioxidant enzymes. J Plant Physiol 199:29–38

    Article  CAS  PubMed  Google Scholar 

  • Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH (2014) Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol Cell 56:153–162

    Article  CAS  PubMed  Google Scholar 

  • Kovacs I, Durner J, Lindermayr C (2015) Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol 208:860–872

    Article  CAS  PubMed  Google Scholar 

  • Krasylenko YA, Yemets AI, Blume YB (2017) Cell mechanisms of nitric oxide signaling in plants under abiotic stress conditions. In: Pandey G (ed) Mechanism of plant hormone signaling under stress. Wiley, Hoboken, NJ

    Google Scholar 

  • Kumar A, Castellano I, Patti FP, Palumbo A, Buia MC (2015) Nitric oxide in marine photosynthetic organisms. Nitric Oxide 47:34–39

    Article  CAS  PubMed  Google Scholar 

  • Kuźniak E, Urbanek H (2000) The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol Plant 22:195–203

    Article  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Ann Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    Article  CAS  PubMed  Google Scholar 

  • Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12:451–458

    Article  CAS  PubMed  Google Scholar 

  • Li SW, Xue L (2010) The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings. In Vitro Cell Dev Biol Plant 46:142–148

    Article  CAS  Google Scholar 

  • Li SW, Xue L, Xu S, Feng H, An L (2007) Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul 52:173–180

    Article  CAS  Google Scholar 

  • Li Q, Wang YJ, Liu CK, Pei ZM, Shi WL (2017) The crosstalk between ABA, nitric oxide, hydrogen peroxide, and calcium in stomatal closing of Arabidopsis thaliana. Biologia 72:1140–1146

    CAS  Google Scholar 

  • Liao YWK, Sun ZH, Zhou YH, Shi K, Li X, Zhang GQ, Xia XJ, Chen ZX, Yu JQ (2013) The role of hydrogen peroxide and nitric oxide in the induction of plant-encoded RNA-dependent RNA polymerase 1 in the basal defense against Tobacco Mosaic Virus. PLoS One 8:e76090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindermayr C, Sell S, Muller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang H, Ma Z, Gai X, Sun Y, He S, Liu X, Wang Y, Xuan Y, Gao Z (2018) Transcriptomic evidence for involvement of reactive oxygen species in Rhizoctonia solani AG1 IA sclerotia maturation. Peer J 6:e5103

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano-Juste J, León J (2011) Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol 156:1410–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei ME, Mithöfer A, Arimura G, Uchtenhagen H, Bossi S, Bertea CM, Starvaggi Cucuzza L, Novero M, Volpe V, Quadro S, Boland W (2006) Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol 140:1022–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181:540–544

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193

    Article  CAS  Google Scholar 

  • Mallick N, Mohn FH, Soeder CJ, Grobbelaar JU (2002) Ameliorative role of nitric oxide on H2O2 toxicity to a chlorophycean alga Scenedesmus obliquus. J Gen Appl Microbiol 48:1–7

    Article  CAS  PubMed  Google Scholar 

  • Matilla-Vázquez MA, Matilla AJ (2014) Role of H2O2 as signaling molecule in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Heidelberg, pp 361–380

    Google Scholar 

  • McDowell RE, Amsler CD, Dickinson DA, McClintock JB, Baker BJ (2014) Reactive oxygen species and the Antarctic macroalgal wound response. J Phycol 50:71–80

    Article  CAS  PubMed  Google Scholar 

  • Melo NKG, Bianchetti RE, Lira BS, Oliveir PMR, Zuccarelli R, Dias DLO, Demarco D, Peres LEP, Rossi M, Freschi L (2016) Nitric oxide, ethylene, and auxin cross talk mediates greening and plastid development in deetiolating tomato seedlings. Plant Physiol 170:2278–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra AN, Misra M, Singh R (2011) Nitric oxide ameliorates stress responses in plants. Plant Soil Environ 57:95–100

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trend Plant Sci 22:11–19

    Article  CAS  Google Scholar 

  • Mittler R, Berkowitz G (2001) Hydrogen peroxide, a messenger with too many roles? Redox Rep 6:69–72

    Article  CAS  PubMed  Google Scholar 

  • Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H (2015) Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genom 16:58

    Article  CAS  Google Scholar 

  • Molassiotis A, Fotopoulos V (2011) Oxidative and nitrosative signaling in plants two branches in the same tree? Plant Signal Behav 6:210–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Moni A, Islam MN, Uddin MJ (2018) Role of auxin and nitric oxide on growth and development of lateral root of plants: possible involvement of exogenously induced Phot1. J Adv Biotechnol Exp Ther 1:61–64

    Article  Google Scholar 

  • Mor A, Koh E, Weiner L, Rosenwasser S, Sibony-Benyamini H, Fluhr R (2014) Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiol 165:249–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Fujita M, Tran LSP (2015) Nitric oxide mediates hydrogen peroxide- and salicylic acid induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul 77:265–277

    Article  CAS  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Mulaudzi N, Ludidi O, Ruzvidzo M, Morse N, Hendricks E, Iwuoha C, Gehring C (2011) Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett 585:2693–2697

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N (2018) ROS-dependent signalling pathways in plants and algae exposed to high light: comparisons with other eukaryotes. Free Radic Biol Med 122:52–64

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plant 5:pls052

    Article  CAS  Google Scholar 

  • Mydlarz LD, Jacobs RS (2004) Comparison of an inducible oxidative burst in freeliving and symbiotic dinoflagellates reveals properties of the pseudopterosins. Phytochemistry 65:3231–3241

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah K, Sidek H (2010) The green MAPKS. Asian J Plant Sci 9:1–10

    Article  CAS  Google Scholar 

  • Nan W, Wang X, Yang L, Hu Y, Wei Y, Liang X, Mao L, Bi Y (2014) Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development. J Exp Bot 65:1571–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Niu L, Liao W (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Front Plant Sci 7:230

    PubMed  PubMed Central  Google Scholar 

  • Noronha-Dutra AA, Epperlein MM, Woolf N (1993) Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing. FEBS Lett 321:59–62

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JTA, Barreto ALH, Vasconcelos IM, Eloy YRG, Gondim DMF, Fernandes CF, Freire-Filho FR (2014) Role of antioxidant enzymes, hydrogen peroxide and PR-proteins in the compatible and incompatible interactions of cowpea (Vigna unguiculata) genotypes with the fungus Colletotrichum gloeosporioides. J Plant Physiol Pathol 2:3

    Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogenactivated protein (map) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orozco-Cárdenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnol J 2:359–366

    Article  CAS  PubMed  Google Scholar 

  • París R, Vazquez MM, Graziano M, Terrile MC, Miller ND, Spalding EP, Otegui MS, Casalongué CA (2018) Distribution of endogenous NO regulates early gravitropic response and PIN2 localization in Arabidopsis roots. Front Plant Sci 9:495

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L (2009) Ozone and nitric oxide induce cGMP-dependent and independent transcription of defence genes in tobacco. New Phytol 181:860–870

    Article  CAS  PubMed  Google Scholar 

  • Pasqualini S, Cresti M, Del Casino C, Faleri C, Frenguelli G, Tedeschini E, Ederli L (2015) Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica. Biol Plant 59:735–744

    Article  CAS  Google Scholar 

  • Peleg-Grossman S, Melamed-Book N, Cohen G, Levine A (2010) Cytoplasmic H2O2 prevents translocation of NPR1 to the nucleus and inhibits the induction of PR genes in Arabidopsis. Plant Signal Behav 5:1401–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perl-Treves R, Perl A (2002) Oxidative stress: an introduction. In: Inze D, Montago M (eds) Oxidative stress in plants. Taylor and Francis, New York, NY, pp 1–32

    Google Scholar 

  • Pokora W, Aksmann A, Baścik-Remisiewicz A, Dettlaff-Pokora A, Rykaczewski M, Gappa M, Tukaj Z (2017) Changes in nitric oxide/hydrogen peroxide content and cell cycle progression: study with synchronized cultures of green alga Chlamydomonas reinhardtii. J Plant Physiol 208:84–93

    Article  CAS  PubMed  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Mic Int 16:1094–1105

    Article  CAS  Google Scholar 

  • Potin P (2008) Oxidative burst and related responses in biotic interactions of algae. In: Amsler CD (ed) Algal chemical ecology. Springer, Heidelberg

    Google Scholar 

  • Prado AM, Marshall Porterfield D, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Kumar A, Matsuoka R, Takahashi A, Fujii R, Sugiura Y, Kikuchi H, Aoyagi S, Aikawa T, Kondo T, Yuasa M, Pospíšil P, Kasai S (2017) Real-time monitoring of superoxide anion radical generation in response to wounding: electrochemical study. Peer J 5:e3050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prasad A, Sedlářová M, Pospíšil P (2018) Singlet oxygen imaging using fuorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci Rep 8:13685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prats E, Mur LAJ, Sanderson R, Carver TLW (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. hordei. Mol Plant Pathol 6:65–78

    Article  CAS  PubMed  Google Scholar 

  • Procházková D, Haisel D, Pavlíková D (2014) Nitric oxide biosynthesis in plants – the short overview. Plant Soil Environ 60:129–134

    Article  Google Scholar 

  • Procházková D, Wilhelmová N, Pavlík M (2015) Reactive nitrogen species and nitric oxide. In: Khan MN, Mobin M, Mohammad F, Corpas FJ (eds) Nitric oxide action in abiotic stress responses in plants. Springer, Heidelberg, pp 3–19

    Google Scholar 

  • Qiao M, Sun J, Liu N, Sun T, Liu G, Han S, Hou C, Wang D (2015) Changes of nitric oxide and its relationship with H2O2 and Ca2+ in defense interactions between wheat and Puccinia triticina. PLoS One 10:e0132265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  PubMed  Google Scholar 

  • Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464–26472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues O, Reshetnyak G, Grondin A, SaijoY LN, Maurel C, Verdoucq L (2017) Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc Natl Acad Sci U S A 114:9200–9205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite mediated tyrosine nitration. Plant Cell 19:4120–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rőszer T (2014) Biosynthesis of nitric oxide in plants. In: Khan MN, Mobin M, Mohammad F, Corpas JF (eds) Nitric oxide in plants: metabolism and role in stress physiology. Springer, Heidelberg, pp 17–33

    Chapter  Google Scholar 

  • Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56:13–27

    Article  CAS  PubMed  Google Scholar 

  • Salachna P, Zawadzińska A (2018) Effect of nitric oxide on growth, flowering and bulb yield of Eucomis autumnalis. Acta Hortic 1201:635–640

    Article  Google Scholar 

  • Santolini J, André F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63:30–38

    Article  CAS  PubMed  Google Scholar 

  • Saxena I, Srikanth S, Chen Z (2016) Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570

    Article  PubMed  PubMed Central  Google Scholar 

  • Senthil Kumar R, Shen CH, Wu PY, Suresh Kumar S, Sang Hua M, Yeh KW (2016) Nitric oxide participates in plant flowering repression by ascorbate. Sci Rep 6:35246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheokand S, Kumari A (2015) Nitric oxide and abiotic stress-induced oxidative stress. In: Khan M, Mobin M, Mohammad F, Corpas F (eds) Nitric oxide action in abiotic stress responses in plants. Springer, Heidelberg

    Google Scholar 

  • Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280

    Article  CAS  Google Scholar 

  • Singh N, Bhatla SC (2018) Nitric oxide regulates lateral root formation through modulation of ACC oxidase activity in sunflower seedlings under salt stress. Plant Signal Behav 25:1–7

    Google Scholar 

  • Sinha AK, Jagg M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signalling in plants under abiotic stress. Plant Signal Behav 6:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim Pol 54:39–50

    PubMed  Google Scholar 

  • Srivastava AK, Penna S, Van Nguyen D, Tran LSP (2014) Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit Rev Biotechnol 28:1–10

    Article  CAS  Google Scholar 

  • Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106:675–683

    Article  CAS  PubMed  Google Scholar 

  • Štolfa CI, Špoljarić MD, Žuna PT, Lončarić Z (2016) Glutathione and related enzymes in response to abiotic stress. In: Gupta DK, Palma JM, Corpas FJ (eds) Redox state as a central regulator of plant cell stress responses. Springer, Heidelberg, pp 183–211

    Chapter  Google Scholar 

  • Štolfa ČI, Žuna PT, Špoljarić MD (2018) Abiotic stress response in plants: the relevance of tocopherols. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 233–251

    Chapter  Google Scholar 

  • Sun H, Feng F, Liu J, Zhao Q (2018) Nitric oxide affects rice root growth by regulating auxin transport under nitrate supply. Front Plant Sci 9:659

    Article  PubMed  PubMed Central  Google Scholar 

  • Szopińska D (2014) Effects of hydrogen peroxide treatment on the germination, vigour and health of Zinnia elegans seeds. Folia Hort 26:19–29

    Article  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Prommer J, Watanabe M (2013) Endogenous nitric oxide generation in protoplast chloroplasts. Plant Cell Rep 32:31–44

    Article  CAS  PubMed  Google Scholar 

  • Thomas F, Cosse A, Goulitquer S, Raimund S, Morin P, Valero M, Leblanc C, Potin P (2011) Waterborne signaling primes the expression of elicitor-induced genes and buffers the oxidative responses in the brown alga Laminaria digitata. PLoS One 6:e21475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Hernández M, Torres-Pacheco I, Gautier F, Álvarez-Mayorga B, Cruz-Hernández A, García-Mier L, Jiménez-García SN, Ocampo-Velázquez RV, Feregrino-Perez AA, Guevara-Gonzalez RG (2017) Influence of hydrogen peroxide foliar applications on in vitro antimicrobial activity in Capsicum chinense Jacq. Plant Biosys 151:269–275

    Article  Google Scholar 

  • Varnova E, Inze D, van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  Google Scholar 

  • Vianello A, Macri FJ (1991) Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. Bioenerg Biomemb 23:409–423

    Article  CAS  Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 5:713–722

    Article  CAS  Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  Google Scholar 

  • Wang YQ, Feechan A, Yun BW, Shafiei R, Hofmann A, Taylor P, Xue P, Yang FQ, Xie ZS, Pallas JA, Chu CC, Loake GJ (2009) S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 284:2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hao X, Lu Q, Wang L, Qian W, Li N, Ding C, Wang X, Yang Y (2018) Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Hortic Res 5:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weisslocker-Schaetzel M, André F, Touazi N, Foresi N, Lembrouk M, Dorlet P, Frelet-Barrand A, Lamattina L, Santolini J (2017) The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Sci 265:100–111

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    Article  CAS  PubMed  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtyla L, Lechowska K, Kubala S, Garnczarsk M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 8:639–647

    Article  CAS  Google Scholar 

  • Wünsche H, Baldwin IT, Wu J (2011) S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. J Exp Bot 62:4605–4616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang H, Kim HJ, Chen H, Lu Y, Lu X, Wang C, Zhou B (2018) Reactive oxygen species and nitric oxide induce senescence of rudimentary leaves and the expression profiles of the related genes in Litchi chinensis. Hort Res 5:23

    Article  CAS  Google Scholar 

  • Yu M, Lamattina L, Spoe SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang H (2016) Hydrogen sulfide in plant biology. In: Lamattina L, García-Mata C (eds) Gasotransmitters in plants. Signaling and communication in plants. Springer, Cham

    Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res 28:5449–5460

    Article  CAS  Google Scholar 

  • Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe 13:191–202

    Article  CAS  Google Scholar 

  • Zurbriggen MD, Carrillo N, Hajirezaei MR (2010) ROS signaling in the hypersensitive response: when, where and what for? Plant Signal Behav 5:393–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivna Štolfa Čamagajevac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Štolfa Čamagajevac, I., Špoljarić Maronić, D., Žuna Pfeiffer, T., Bek, N., Lončarić, Z. (2019). Nitric Oxide and Hydrogen Peroxide in Plant Response to Biotic Stress. In: Gupta, D., Palma, J., Corpas, F. (eds) Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-11129-8_11

Download citation

Publish with us

Policies and ethics