Skip to main content

Anthropogenic Aquifer Recharge and Water Quality

  • Chapter
  • First Online:
Anthropogenic Aquifer Recharge

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

The composition of recharge water evolves as it passes through the unsaturated zone and enters and flows through an aquifer. Infiltrated and injected waters interact with aquifer minerals and organic matter, and mix and react with native groundwater. Geochemical processes during and after aquifer recharge can either improve or cause a deterioration of water quality. The concentrations of pathogens and some chemical contaminants are reduced during recharge and subsequent aquifer transport and residence. Storage of impaired waters (e.g., treated wastewater) in aquifers provides time for the biodegradation of contaminants that degrade slowly. Some managed aquifer recharge (MAR) projects (e.g., soil-aquifer treatment and bank filtration) intentionally take advantage of natural contaminant attenuation processes to improve water quality. Fluid-rock interactions in some MAR systems have released arsenic and metals into recharged waters causing an unacceptable deterioration in water quality. Pretreatment options are available to control adverse geochemical reactions, such as dissolved oxygen removal to prevent oxidation of arsenic-bearing sulfide minerals and associated leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaerts, G. J., & Khouri, N. (2004). Arsenic contamination of groundwater: mitigation strategies and policies. Hydrogeology Journal, 12, 103–144.

    Article  Google Scholar 

  • Antoniou, E. A., Hartog, N., van Breukelen, B. M., & Stuyfzand, P. J. (2014). Aquifer pre-oxidation using permanganate to mitigate water quality deterioration during aquifer storage and recovery. Applied Geochemistry, 50, 25–36.

    Article  Google Scholar 

  • Appelo, C. A. J., & de Vet, W. W. J. M. (2003). Modeling of in situ iron removal from groundwater with trace elements such as arsenic. In A. H. Welch & K. G. Stollenwerk (Eds.), Arsenic in groundwater (pp. 381–401). Boston: Kluwer Academic.

    Chapter  Google Scholar 

  • Appelo, C. A. J., Drijver, B., Hekkenberg, R., & de Jonge, M. (1999). Modeling in situ iron removal from ground water. Ground Water, 37(6), 811–817.

    Article  Google Scholar 

  • Arthur, J. D., Cowart, J. B., & Dabous, A. A. (2001). Florida aquifer storage and recovery geochemical study: Year three progress report. Florida Geological Survey Open-File Report No. 83.

    Google Scholar 

  • Arthur, J. D., Dabous, A. A., & Cowart, J. B. (2002). Mobilization of arsenic and other trace elements during aquifer storage and recovery, southwest Florida. In G. R. Aiken & E. K. Kuniansky (Eds.), U.S. Geological Survey Artificial Recharge Workshop Proceedings, April 2–4, 2002, Sacramento, California, (pp. 47–50). U.S. Geological Survey Open-File Report 02-89.

    Google Scholar 

  • Arthur, J. D., Dabous, A. A., & Cowart, J. B. (2005a). Water-rock geochemical considerations for aquifer storage and recovery: Florida case studies. In C.-F. Tsang & J. A. Apps (Eds.), Underground injection science and technology, Developments in Water Science 52 (pp. 65–77). Amsterdam: Elsevier.

    Google Scholar 

  • Arthur, J. D., Dabous, A. A., & Fischler, C. (2005b). Bench-scale geochemical assessment of water-rock interactions: Sanford aquifer storage and recovery facility, Draft report submitted the Camp Dresser and McKee, Inc. (September 21, 2005). Tallahassee: Florida Geological Survey.

    Google Scholar 

  • Arthur, J. D., Dabous, A. A., & Fischler, C. (2005c). Bench-scale geochemical assessment of water-rock interactions: Seminole County ASR core samples, Draft report submitted the Camp Dresser and McKee, Inc. Florida Geological Survey: Tallahassee.

    Google Scholar 

  • Arthur, J. D., Dabous, A. A., & Fischler, C. (2007). Aquifer storage and recovery in Florida: Geochemical assessment of potential storage zones. In P. Fox (Ed.), Management of aquifer recharge for sustainability, proceedings of the 6th International Symposium on managed aquifer recharge of Groundwater (pp. 185–197). Phoenix: Acacia Publishing.

    Google Scholar 

  • ASR Systems, LLC (2006). Evaluation of arsenic mobilization processes occurring during aquifer storage recovery activities. Task 2—Technical memorandum, literature review, arsenic mobilization processes during ASR operations. Report prepared for the Southwest Florida Water Management District. Gainesville, FL: ASR Systems LLC.

    Google Scholar 

  • ASTM. (2010). Standard test method for measuring the exchange complex and cation exchange capacity of inorganic fine-grained soils (Standard D7503-10). West Conshohocken, PA: ASTM International.

    Google Scholar 

  • Berner, R. A. (1970). Sedimentary pyrite formation. American Journal of Science, 268, 1–23.

    Article  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Ahmed, K. M., Jacks, G., & Naidu, R. (2004). Arsenic in groundwater of sedimentary aquifers. Applied Geochemistry, 19(2), 163–260.

    Article  Google Scholar 

  • Bouwer, H. (1973). Design and operation of land treatment systems for minimum contamination of groundwater. In J. Braunstein (Ed.), Underground water management and artificial recharge, Publication 110 (pp. 273–290). London: International Association of Hydrological Sciences.

    Google Scholar 

  • Bouwer, H. (1974). Renovating municipal wastewater by high-rate infiltration for groundwater recharge. Journal American Water Works Association, 66(3), 159–163.

    Article  Google Scholar 

  • Buszka, P. M., Brock, R. D., & Hooper, R. P. (1994). Hydrogeology and selected water-quality aspects of the Hueco Bolson Aquifer at the Hueco Bolson Recharge Project area, El Paso, Texas. U.S. Geological Survey Water-Resources Investigations Report 91-4092.

    Google Scholar 

  • Castro, J. E., & Gardner, L. R. (1997). A geochemical model for aquifer storage and recovery project at Myrtle Beach, SC. In D. R. Kendall (Ed.), Conjunctive use of water resources: Aquifer storage and recovery, Proceedings AWRA Symposium, Long Beach, California (pp. 201–210). Middleburg, VA: American Water Resources Association.

    Google Scholar 

  • Chappaz, A., Lyons, T. W., Gregory, D. D., Reinhard, C. T., Gill, B. C., Li, C., et al. (2014). Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochimica et Cosmochimica Acta, 126, 112–122.

    Article  Google Scholar 

  • CH2 M Hill (2007). Arsenic mobilization in two Suwanee Limestone aquifer storage recovery systems. Final Technical Report submitted to the Southwest Florida Water Management District (August 2007). CH2 M Hill.

    Google Scholar 

  • De Vito, R. H. (1978). Uranium geology and exploration., Lecture notes and references Golden, CO: Colorado School of Mines.

    Google Scholar 

  • Dillon, P. J. & Pavelic, P. (1996). Guidelines on the quality of stormwater and treated wastewater for injection into aquifers for storage and reuse, Report No. 63A. Adelaide: Centre for Groundwater Studies.

    Google Scholar 

  • Dillon, R., Toze, S., Pavelic, P., Vanderzalm, J., Barry, K., Ying, G.-L., Kookana, R., Skjemstad, J., Nicholson, B., Miller, R., Correll, R., Prommer, H., Greskowiak, J., & Stuyfzand, P. (2006). Water quality improvements during aquifer storage and recovery at ten sites. In Recharge systems for protecting and enhancing groundwater resources, Proceedings of the 5th International Symposium on Management of Aquifer Recharge, Berlin, Germany, 11–16 June 2005 (pp. 85–94). Paris: UNESCO.

    Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters: Surface and groundwater environments (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Ehrlich, G. G., Ku, H. F. H., Vecchoili, J., & Ehlke, T. A. (1979). Microbiological effects of recharging the Magothy aquifer, Bay Park, New York with tertiary-treated sewage. U.S. Geological Survey Professional Paper 751-E.

    Google Scholar 

  • Fakhreddine, S., Dittmar, J., Phipps, D., Dadakis, J., & Fendorf, S. (2015). Geochemical triggers of arsenic mobilization during managed aquifer recharge. Environmental Science and Technology, 49, 7802–7809.

    Article  Google Scholar 

  • Faust, S. D., & Vecchioli, J. (1974). Injecting highly treated sewage into a deep-sand aquifer. Journal American Water Works Association, 66(6), 371–377.

    Article  Google Scholar 

  • Granger, H. C. & Warren, C. G. (1979). The importance of dissolved free oxygen during formation of sandstone-type uranium deposits. U.S. Geological Survey Open-File Report 79-1603.

    Google Scholar 

  • Gregory, D. D., Large, R. R., Halpin, J. A., Baturina, E. L., Lyons, T. W., Wu, S., et al. (2015). Trace element content of sedimentary pyrite in black shales. Economic Geology, 110(6), 1389–1410.

    Article  Google Scholar 

  • Greskowiak, J., Prommer, H., Vanderzalm, J., Pavelic, P., & Dillon, P. (2006). Quantifying biogeochemical changes during ASR of reclaimed water at Bolivar, South Australia. In Recharge systems for protecting and enhancing groundwater resources, Proceedings of the 5th International Symposium on Management of Aquifer Recharge, Berlin, Germany, 11–16 June 2005 (pp. 360–365). Paris: UNESCO.

    Google Scholar 

  • Greskowiak, J., Prommer, H., Vanderzalm, J., Le Gal La Salle, C., Pavelic, P., & Dillon, P. (2005a). PHT3D modeling of water quality changes during ASR at Bolivar. In P. Dillon & S. Toze (Eds.), Water quality improvements during aquifer storage and recovery. Volume 1: water quality improvement processes, Report 91056F (245–277). Denver: AWWA Research Foundation.

    Google Scholar 

  • Greskowiak, J., Prommer, H., Vanderzalm, J., Pavelic, P., & Dillon, P. (2005b). Modeling of carbon cycles and biogeochemical changes during injection and recovery of reclaimed water at Bolivar, South Australia. Water Resources Research, 41, W10418.

    Article  Google Scholar 

  • Guan, H., Schulze-Makuch, D., Schaffer, S., & Pillai, S. D. (2003). The effect of critical pH on virus fate and transport in saturated porous medium. Ground Water, 41(5), 701–708.

    Article  Google Scholar 

  • Hallberg, R. O., & Martinell, R. (1976). Vyredox—In situ purification of ground water. Ground Water, 14(2), 88–93.

    Article  Google Scholar 

  • Hamlin, S. N. (1985). An investigation of ground-water recharge by injection in the Palp Alto Baylands, California; hydraulic and chemical interactions—final report. U.S. Geological Survey Water-Resources Investigations Report 84-4152.

    Google Scholar 

  • Hamlin, S. N. (1987). Hydraulic/chemical changes during ground-water recharge by injection. Ground Water, 25, 267–274.

    Article  Google Scholar 

  • Harbison, P. A. T. (1986). Mangrove muds—A sink and a source for trace metals. Marine Pollution Bulletin, 17(6), 246–250.

    Article  Google Scholar 

  • Helz, G. R., Vorlicek, T. P., & Kahn, M. D. (2004). Molybdenum scavenging by iron monosulfide. Environmental Science and Technology, 38(16), 4263–4268.

    Article  Google Scholar 

  • Hendershot, W. H., & Duquette, M. (1986). A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Science Society of America Journal, 50(3), 605–608.

    Article  Google Scholar 

  • Herczeg, A. L., Rattray, K. J., Dillon, P. J., Pavelic, P., & Barry, K. E. (2004). Geochemical processes during five years of aquifer storage recovery. Ground Water, 42, 438–445.

    Article  Google Scholar 

  • Houben, G. J. (2003). Iron oxide incrustations in wells. Part 1: Genesis, mineralogy and geochemistry. Applied Geochemistry, 18(6), 927–939.

    Article  Google Scholar 

  • Huerta-Diaz, M. A., & Morse, J. W. (1992). Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56(7), 2681–2702.

    Article  Google Scholar 

  • Idelovitch, E., Icekson-Tal, N., Avraham, O., & Michail, M. (2003). The long-term performance of soil aquifer treatment (SAT) for effluent reuse. Water Science & Technology: Water Supply, 3(4), 239–246.

    Google Scholar 

  • Jones, G., & Pichler, T. (2007). Relationship between pyrite stability and arsenic mobility during aquifer storage and recovery in southwest central Florida. Environmental Science and Technology, 41(2), 723–730.

    Article  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Lazareva, O., Druschel, G., & Pichler, T. (2015). Understanding arsenic behavior in carbonate aquifers: Implications for aquifer storage and recovery (ASR). Applied Geochemistry, 52, 57–66.

    Article  Google Scholar 

  • Lazareva, O., & Pichler, T. (2007). Naturally occurring arsenic in the Miocene Hawthorn Group, southwestern Florida: Potential implication for phosphate mining. Applied Geochemistry, 22, 953–973.

    Article  Google Scholar 

  • Leader, J. W., Dunne, E. J., & Reddy, K. R. (2008). Phosphorus sorbing materials: Sorption dynamics and physicochemical characteristics. Journal of Environmental Quality, 37(1), 174–181.

    Article  Google Scholar 

  • Lee, S. Y., Lee, J. U., Choi, H., & Kim, K. W. (2004). Sorption behaviors of heavy metals in SAT (soil aquifer treatment) system. Water Science and Technology, 50(2), 263–268.

    Article  Google Scholar 

  • Lin, C., Negev, I., Eshel, G., & Banin, A. (2008). In situ accumulation of copper, chromium, nickel, and zinc in soils used for long-term waste water reclamation. Journal of Environmental Quality, 37(4), 1477–1487.

    Article  Google Scholar 

  • Maliva, R. G., Griswold, R. F., & Autrey, M. M. (2013). Prototype for a reclaimed water aquifer storage recovery system benefits and operational experiences. Florida Water Resources Journal, 65(3), 54–59.

    Google Scholar 

  • Maliva, R. G., Autrey, M. M., Law, L., Manahan, E. S., & Missimer, T. M. (2018). Reclaimed water aquifer storage and recovery system: Update on a groundbreaking system in Florida. Florida Water Resource Journal, 69(2), 52–59.

    Google Scholar 

  • Maliva, R. G., & Missimer, T. M. (2010). Aquifer storage and recovery and managed aquifer recharge using wells: Planning, hydrogeology, design, and operation. Houston: Schlumberger.

    Google Scholar 

  • Manrique, L. A., Jones, C. A., & Dyke, P. T. (1991). Predicting cation-exchange capacity from soil physical and chemical properties. Soil Science Society of America Journal, 55(3), 787–794.

    Article  Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water; the example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293.

    Article  Google Scholar 

  • Mettler, S., Abdelmoula, M., Hoehn, E., Schoenenberger, R., Weidler, P., & Von Gunten, U. (2001). Characterization of iron and manganese precipitates from an in situ ground water treatment plant. Ground Water, 39(6), 921–930.

    Article  Google Scholar 

  • Mirecki, J. E., Campbell, B. G., Conlon, K. J., & Petkewich, M. D. (1998). Solute changes during aquifer storage recovery testing in a limestone/clastic aquifer. Ground Water, 36, 394–403.

    Article  Google Scholar 

  • Mirecki, J. E. (2006). Geochemical models of water-quality changes during aquifer storage recovery (ASR) cycle tests, Phase 1: Geochemical models using existing data, Final Report ERDC/EL TR-06-8. Jacksonville: U.S. Army Corps of Engineers.

    Google Scholar 

  • Mirecki, J. E., Bennett, M. W., & López-Baláez, M. C. (2013). Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer. Groundwater, 51(4), 539–549.

    Google Scholar 

  • Natural Research Council (2008). Prospects for managed underground storage of recoverable water. Washington, DC: National Academies Press.

    Google Scholar 

  • Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., et al. (2013). The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environmental Health Perspectives, 121(3), 295–302.

    Article  Google Scholar 

  • Norton, S., Ellison, D., & Kohn, S. (2012). Minimizing arsenic mobilization during aquifer storage and recovery by source water degasification. Paper presented at 2012 NGWA Ground Water Summit. May 6–10, 2012, Garden Grove, CA.

    Google Scholar 

  • Panno, S. V., Hackley, K. C., Kelly, W. R., & Hwang, H. H. (2006). Isotopic evidence of nitrate sources and denitrification in the Mississippi river, Illinois. Journal of Environmental Quality, 35, 495–504.

    Article  Google Scholar 

  • Parkhurst, D. L., & Kipp, K. L. (2002). Parallel processing for PHAST—A three-dimensional reactive-transport simulator. In S. M. Hassanizadeh, R. J. Schotting, W. G. Gray, & G. G. Pinder (Eds.), Computational methods in water resources, Developments in water science 47 (pp. 711–718). Amsterdam: Elsevier.

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). PHREEQC (Version 2)—A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigations Report 99-42549.

    Google Scholar 

  • Petkewich, M. D., Parkhurst, D. L., Conlon, K. J., & Mirecki, J. E. (2002). Hydrologic and geochemical evaluation of aquifer storage recovery in the Santee Limestone/Black Mingo aquifer, Charleston, South Carolina, 1998–2002. U.S. Geological Survey Scientific Investigations Report 2004-5046.

    Google Scholar 

  • Plummer, L. N., Prestemon, E. C., & Parkhurst, D. L. (1994). An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH–version 2.0. U.S. Geological Survey Water-Resources Investigations Report 94-4169.

    Google Scholar 

  • Plummer, L. N., Prestemon, E. C., & Parkhurst, D. L. (1991). An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH. U.S. Geological Survey Water-Resources Investigations Report 91-4078.

    Google Scholar 

  • Price, R. E., & Pichler, T. (2006). Abundance and mineralogical association of arsenic in the Suwannee Limestone (Florida): Implications for arsenic release during water-rock interaction. Chemical Geology, 228, 44–56.

    Article  Google Scholar 

  • Prommer, H., Barry, D. A., & Zheng, C. (2003). MODFLOW/MT3DMS based reactive multi-component transport modeling. Ground Water, 41, 347–357.

    Article  Google Scholar 

  • Pyne, R. D. G. (2007). Evaluation of arsenic mobilization processes occurring during aquifer storage recovery activities. Task 3—Technical Memorandum: field data analysis, Report prepared for the Southwest Florida Water Management District (October 16, 2007). Gainesville, FL: ASR Systems.

    Google Scholar 

  • Pyne, R. D. G., Singer, P. C., & Miller, C. T. (1996). Aquifer storage recovery of treated drinking water. Denver: American Water Works Association Research Foundation.

    Google Scholar 

  • Ragone, S. E. (1977). Geochemical effects of recharging the Magothy Aquifer, Bay Park, with tertiary-treated sewage. U.S. Geological Survey Professional Paper 751-D.

    Google Scholar 

  • Ragone, S. E., Ku, H. F. H., & Vecchioli, J. (1975). Mobilization of iron in water in the Magothy Aquifer during long-term recharge with tertiary-treated sewage, Bay Park, New York. U.S. Geological Survey Journal of Research, 3, 93–98.

    Google Scholar 

  • Ravenscroft, P., McArthur, J. M., & Hoque, B. A. (2001). Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In W. R. Chappel, C. O. Abernathy, & R. Calderon (Eds.), Arsenic exposure and health effects IV (pp. 53–78). Oxford: Elsevier.

    Google Scholar 

  • Rinck-Pfeiffer, S. M., Ragusa, S. R., & Vandevelde, T. (1998). Column experiments to evaluate clogging and biochemical reactions in the vicinity of an effluent injection well. In J. H. Peters, et al. (Eds.), Artificial recharge of groundwater (pp. 93–97). Rotterdam: Balkema.

    Google Scholar 

  • Roy, W. R., Krapac, I. G., Chou, S. F. J., & Griffin, R. A. (1992). Batch-type procedures for estimating soil adsorption of chemicals. Cincinnati: USEPA Risk Reduction Engineering Laboratory.

    Google Scholar 

  • Schreiber, M. E., Simo, J. A., & Freiberg, P. G. (2000). Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeology Journal, 8, 161–176.

    Article  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2001). Source and behaviour of arsenic in natural waters. In United Nations synthesis report on arsenic in drinking water. World Health Organization.

    Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  Google Scholar 

  • Smith, C. G., & Hanor, J. S. (1975). Underground storage of treated water: a field test. Ground Water, 13, 410–417.

    Google Scholar 

  • Stollenwerk, K. G. (2002). Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In A. H. Welch & K. G. Stollenwerk, (Eds.), Arsenic in ground water, geochemistry and occurrence (pp. 67–100). New York: Springer.

    Google Scholar 

  • Storck, F. R., Schmidt, C. K., Lange, F. T., Henson, J. W., & Hahn, K. (2012). Factors controlling micropollutant removal during riverbank filtration (PDF). Journal American Water Works Association, 104(12), E643–E652.

    Article  Google Scholar 

  • Stuyfzand, P. J. (1998a). Quality changes upon injection into anoxic aquifers in the Netherlands: Evaluations of 11 experiments. In J. H. Peters, et al. (Eds.), Artificial recharge of groundwater (pp. 283–291). Rotterdam: Balkema.

    Google Scholar 

  • Stuyfzand, P. J. (1998b). Simple models for reactive transport of pollutants and main constituents during artificial recharge and bank filtration. In J. H. Peters, et al. (Eds.), Artificial recharge of groundwater (pp. 427–434). Rotterdam: Balkema.

    Google Scholar 

  • Stuyfzand, P. J. (2001). Modeling of quality changes upon artificial recharge and bank infiltration: Principles and user’s guide of EASY-LEACHER, Report SWI-99.199. Rijswijk: Kiwa.

    Google Scholar 

  • Stuyfzand, P. J. (2005). East-Leacher modeling of water during deep well injection at Someren. In P. Dillon & S. Toze (Eds.), Water quality improvements during aquifer storage and recovery (Vol. 1, pp. 197–213). Report 91056F Denver: AWWA Research Foundation.

    Google Scholar 

  • Stuyfzand, P. J. (2011). Hydrogeochemical processes during riverbank filtration and artificial recharge of polluted waters. In C. Ray & M. Shamrukh (Eds.), Riverbank filtration for water security in desert countries (pp. 97–128). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Stuyfzand, P. J. (2015). Trace element patterns in Dutch coastal dunes after 50 years of artificial recharge with Rhine River water. Environmental Earth Sciences, 73(12), 7833–7849.

    Article  Google Scholar 

  • Stuyfzand, P. J., & Doomen, A. (2004). The Dutch experience with MARS (Managed Aquifer Recharge and Storage), a review of facilities, techniques and tools. Water Research Publication 05.001. Rijswijk: KIWA.

    Google Scholar 

  • Stuyfzand, P. J., & Pyne, R. D. G. (2010). Arsenic behavior in SW Florida ASR and its export modeling. Proceedings ISMAR-7, Abu Dhabi, 9–13 October 2010.

    Google Scholar 

  • Stuyfzand, P. J., Wakker, J. C., & Putters, B. (2006). Water quality changes during aquifer storage and recovery (ASR): Results from the pilot Herten (Netherlands) and their implications for modeling. In Recharge systems for protecting and enhancing groundwater resources, Proceedings of the 5th International Symposium on Management of Aquifer Recharge, Berlin, Germany, 11–16 June 2005 (pp. 164–173). Paris: UNESCO.

    Google Scholar 

  • Thomas, M. F., Kuihiro, K., Traexler, K., & Johnston, M. (2017). Who needs pretreatment? Not Orange County Utilities’ operational aquifer storage and recovery. Florida Water Resources Journal, 68(2), 34–36.

    Google Scholar 

  • Tunesi, S., Poggi, V., & Gessa, C. (1999). Phosphate adsorption and precipitation in calcareous soils: The role of calcium ions in solution and carbonate minerals. Nutrient Cycling in Agroecosystems, 53(3), 219–227.

    Article  Google Scholar 

  • Vanderzalm, J. L., Le Gal La Salle, C., Hutson, J. L., & Dillon, P. J. (2002). Water quality changes during aquifer storage and recovery at Bolivar, South Australia. In P. J. Dillon (Ed.), Management of aquifer recharge for sustainability (pp. 82–88). Lisse: A.A. Balkema.

    Google Scholar 

  • Vanderzalm, J. L., Dillon, P. J., & Le Gal La Salle, C. (2007). Arsenic mobility under variable redox conditions induced during ASR. In P. Fox (Ed.), Management of aquifer recharge for sustainability, Proceedings of the 6th International Symposium on Managed Aquifer Recharge of Groundwater (pp. 209–219). Phoenix: Acacia Publishing.

    Google Scholar 

  • Van Halem, D., Heijman, S. G. J., Johnston, R., Huq, I. M., Ghosh, S. K., Verberk, J. Q. J. C., et al. (2010). Subsurface iron and arsenic removal: Low-cost technology for community-based water supply in Bangladesh. Water Science and Technology, 62(11), 2702–2709.

    Article  Google Scholar 

  • Vengosh, A., & Pankratov, I. (1998). Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Ground Water, 36(5), 815–824.

    Article  Google Scholar 

  • Wallis, I., Prommer, H., Simmons, C. T., Post, V., & Stuyfzand, P. J. (2010). Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge. Environmental Science and Technology, 44, 5035–5041.

    Article  Google Scholar 

  • Wallis, I., Prommer, H., Pichler, T., Norton, S. B., Annable, M. D., & Simmons, C. T. (2011). Process-based reactive transport model to quantify arsenic mobility during aquifer storage and recovery of potable water. Environmental Science and Technology, 45, 6924–6931.

    Article  Google Scholar 

  • Welch, A. H., Westjohn, D. B., Helsel, D. R., & Wanty, R. B. (2000). Arsenic in ground water of the United States: Occurrence and geochemistry. Ground Water, 38, 589–604.

    Article  Google Scholar 

  • Yukselen, Y., & Kaya, A. (2006). Prediction of cation exchange capacity from soil index properties. Clay Minerals, 41(4), 827–837.

    Article  Google Scholar 

  • Zuurbier, K. G. (2015). Increasing freshwater recovery upon aquifer storage. A field and modelling study of dedicated aquifer storage and recovery configurations in brackish-saline aquifers. Ph.D. Dissertation, Technische Universiteit Delft.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Maliva .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maliva, R.G. (2020). Anthropogenic Aquifer Recharge and Water Quality. In: Anthropogenic Aquifer Recharge. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-11084-0_6

Download citation

Publish with us

Policies and ethics