Continuous Protocols for Swarm Robotics

  • Peter KlingEmail author
  • Friedhelm Meyer auf der Heide
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)


We consider simple models of swarms of identical, anonymous robots: they are points in the plane and “see” only their neighbors (robots within distance one). We will deal with distributed local protocols of such swarms that result in formations like “gathering at one point”. The focus will be on protocols assuming a continuous time model. We present upper and lower bounds on their run time and energy consumption, and compare different protocols both theoretically and experimentally.


Robots Continuous Gathering 


  1. 1.
    Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proceedings of 10th International Symposium on Intelligent Control (ISIC), pp. 453–460, August 1995.
  2. 2.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003). Scholar
  3. 3.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005). Scholar
  4. 4.
    Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Rajaraman R., Meyer auf der Heide, F., (eds.) SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, 4–6 June 2011 (Co-located with FCRC 2011), pp. 139–148. ACM (2011).
  5. 5.
    Degener, B., Kempkes, B., Kempkes, P., Meyer auf der Heide, F.: Linear and competitive strategies for continuous robot formation problems. TOPC 2(1), 2:1–2:18 (2015). Scholar
  6. 6.
    Dieudonné, Y., Petit, F.: Self-stabilizing deterministic gathering. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 230–241. Springer, Heidelberg (2009). Scholar
  7. 7.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969). Scholar
  8. 8.
    Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts with limited sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 142–153. Springer, Heidelberg (2004). Scholar
  9. 9.
    Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile robots with dynamic compasses: an optimal result. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 298–312. Springer, Heidelberg (2007). Scholar
  10. 10.
    Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic compass models and gathering algorithms for autonomous mobile robots. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274–288. Springer, Heidelberg (2007). Scholar
  11. 11.
    Katreniak, B.: Convergence with limited visibility by asynchronous mobile robots. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 125–137. Springer, Heidelberg (2011). Scholar
  12. 12.
    Li, S., Meyer auf der Heide, F., Podlipyan, P.: The impact of the gabriel subgraph of the visibility graph on the gathering of mobile autonomous robots. In: Chrobak, M., Fernández Anta, A., Gąsieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp. 62–79. Springer, Cham (2017). Scholar
  13. 13.
    Li, S., Markarian, C., Meyer auf der Heide, F., Podlipyan, P.: A continuous strategy for collisionless gathering. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 182–197. Springer, Cham (2017). Scholar
  14. 14.
    Nguyen, H.G., Pezeshkian, N., Raymond, S.M., Gupta, A., Spector, J.M.: Autonomous communication relays for tactical robots. In: Proceedings of the 11th International Conference on Advanced Robotics (ICAR), pp. 35–40 (2003)Google Scholar
  15. 15.
    Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions, 1st edn. Cambridge University Press, New York (2010)zbMATHGoogle Scholar
  16. 16.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007). Scholar
  17. 17.
    Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006). Scholar
  18. 18.
    Watton, A., Kydon, D.W.: Analytical aspects of the \(n\)-bug problem. Am. J. Phys. 37(2), 220–221 (1969). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universität HamburgHamburgGermany
  2. 2.University of PaderbornPaderbornGermany

Personalised recommendations