Skip to main content

Physics of Contrast-Enhanced Mammography

  • Chapter
  • First Online:
Contrast-Enhanced Mammography

Abstract

The principle and technical feasibility of dual-energy imaging has already been established in the 1970s and 1980s for dual-energy CT (Alvarez and Macovski, Phys Med Biol. 21(5):733–44, 1976), radiographic imaging (Brody et al., Med Phys. 8(3):353–7, 1981; Lehmann et al., Med Phys. 8(5):659-67, 1981), bone removal in thoracic imaging, mammography (Johns et al., Med Phys. 12:297-304, 1985) (for calcium detection), and iodinated contrast imaging. The development of digital mammography in which digital detectors were used instead of analogue film-screens enabled dual-energy mammography, as it allowed the recording of two images in quick succession and more importantly (digital) post-processing of the images to calculate an iodine contrast-enhanced image.

This chapter describes the physics of contrast-enhanced (dual-energy) mammography (CEM), starting from the basis of mammographic image formation: X-ray generation and attenuation of X-rays in the breast. Next, the principle of dual-energy CEM is discussed, the physics involved in the post-processing of the contrast-enhanced image, and the interpretation of gray values in the image. Furthermore, the current commercial implementations are discussed. The issue of radiation exposure of CEM in comparison with standard full-field digital mammography (FFDM) will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol. 1976;21(5):733–44. PMID: 967922.

    Article  CAS  PubMed  Google Scholar 

  2. Brody WR, Butt G, Hall A, Macovski A. A method for selective tissue and bone visualization using dual energy scanned projection radiography. Med Phys. 1981;8(3):353–7. PMID: 7033756.

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann LA, Alvarez RE, Macovski A, Brody WR, Pelc NJ, Riederer SJ, Hall AL. Generalized image combinations in dual KVP digital radiography. Med Phys. 1981;8(5):659–67. PMID: 7290019.

    Article  CAS  PubMed  Google Scholar 

  4. Johns PC, Drost DJ, Yaffe MJ, Fenster A. Dual-energy mammography: initial experimental results. Med Phys. 1985;12(3):297–304. PMID: 4010634.

    Article  CAS  PubMed  Google Scholar 

  5. Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast tissues. Phys Med Biol. 1987;32(6):675–95. PMID: 3039542.

    Article  CAS  PubMed  Google Scholar 

  6. Lalji U, Lobbes M. Contrast-enhanced dual-energy mammography: a promising new imaging tool in breast cancer detection. Womens Health. 2014;10(3):289–98. PMID: 24956295.

    CAS  Google Scholar 

  7. ICRU. Tissue substitutes in radiation dosimetry and measurement, report 44 of the international commission on radiation units and measurements. Bethesda, MD: ICRU; 1989. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html. Accessed 13 Sept 2018.

    Google Scholar 

  8. Dromain C, Canale S, Saab-Puong S, Carton AK, Muller S, Fallenberg EM. Optimization of contrast-enhanced spectral mammography depending on clinical indication. J Med Imaging (Bellingham). 2014;1(3):033506. PMID: 26158058.

    Article  Google Scholar 

  9. Fallenberg EM, Dromain C, Diekmann F, Renz DM, Amer H, Ingold-Heppner B, Neumann AU, Winzer KJ, Bick U, Hamm B, Engelken F. Contrast-enhanced spectral mammography: does mammography provide additional clinical benefits, or can some radiation exposure be avoided? Breast Cancer Res Treat. 2014;146(2):371–81. PMID: 24986697.

    Article  CAS  PubMed  Google Scholar 

  10. Francescone MA, Jochelson MS, Dershaw DD, Sung JS, Hughes MC, Zheng J, Moskowitz C, Morris EA. Low energy mammogram obtained in contrast-enhanced digital mammography (CEDM) is comparable to routine full-field digital mammography (FFDM). Eur J Radiol. 2014;83(8):1350–5. PMID: 24932846.

    Article  PubMed  Google Scholar 

  11. Lalji UC, Jeukens CR, Houben I, Nelemans PJ, van Engen RE, van Wylick E, Beets-Tan RG, Wildberger JE, Paulis LE, Lobbes MB. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria. Eur Radiol. 2015;25(10):2813–20. PMID: 25813015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lobbes MB, Smidt ML, Houwers J, Tjan-Heijnen VC, Wildberger JE. Contrast enhanced mammography: techniques, current results, and potential indications. Clin Radiol. 2013;68(9):935–44. PMID: 23790689.

    Article  CAS  PubMed  Google Scholar 

  13. Richard S, Siewerdsen JH. Cascaded systems analysis of noise reduction algorithms in dual-energy imaging. Med Phys. 2008;35(2):586–601. PMID: 18383680.

    Article  PubMed  Google Scholar 

  14. Markay MK. Physics of mammographic imaging. Boca Raton, FL: CRC Press; 2013. ISBN: 978-1–4398-7544-5.

    Google Scholar 

  15. Hill ML, Mainprize JG, Carton AK, Saab-Puong S, Iordache R, Muller S, Jong RA, Dromain C, Yaffe MJ. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging. Med Phys. 2013;40(8):081907. PMID: 23927321.

    Article  PubMed  Google Scholar 

  16. Hu YH, Scaduto DA, Zhao W. Optimization of contrast-enhanced breast imaging: analysis using a cascaded linear system model. Med Phys. 2017;44(1):43–56. PMID: 28044312.

    Article  CAS  PubMed  Google Scholar 

  17. Puong S, Bouchevreau X, Paoureaux F, Iordache R, Muller S. Dual-energy contrast enhanced digital mammography using a new approach for breast tissue canceling. 2007 Medical imaging proceedings of SPIE, vol 6510 65102H/Proceedings volume 6510, medical imaging 2007: physics of medical imaging; 65102H. 2007. https://doi.org/10.1117/12.710133.

  18. Contillo A, Di Domenico G, Cardarelli P, Gambaccini M, Taibi A. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: polychromaticity correction. Med Phys. 2015;42(11):6641–50. PMID: 26520754

    Article  PubMed  Google Scholar 

  19. Yagil Y, Shalmon A, Rundstein A, Servadio Y, Halshtok O, Gotlieb M, Sklair-Levy M. Challenges in contrast-enhanced spectral mammography interpretation: artefacts lexicon. Clin Radiol. 2016;71(5):450–7. PMID: 26897335

    Article  CAS  PubMed  Google Scholar 

  20. Korporaal JG, Hörnig MD, Mertelmeier T, Hebecker A. Titanium contrast-enhanced mammography (TiCEM). White paper. Erlangen: Siemens Healthineers; 2018.

    Google Scholar 

  21. Hwang YS, Cheung YC, Lin YY, Hsu HL, Tsai HY. Susceptibility of iodine concentration map of dual-energy contrast-enhanced digital mammography for quantitative and tumor enhancement assessment. Acta Radiol. 2018;59(8):893–901. PMID: 29117707.

    Article  PubMed  Google Scholar 

  22. Lobbes MBI, Mulder HKP, Rousch M, Backes WH, Wildberger JE, Jeukens CRLPN. Quantification of enhancement in contrast-enhanced spectral mammography using a custom-made quantifier tool (I-STRIP): a proof-of-concept study. Eur J Radiol. 2018;106:114–21. PMID: 30150032.

    Article  CAS  PubMed  Google Scholar 

  23. Dance DR. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys Med Biol. 1990;35(9):1211–9. PMID: 2236205.

    Article  CAS  PubMed  Google Scholar 

  24. European Communities. European guidelines for quality assurance in breast cancer screening and diagnosis. 4th ed. Luxembourg: Office for Official Publications of the European Communities; 2006.

    Google Scholar 

  25. Wu X, Gingold EL, Barnes GT, Tucker DM. Normalized average glandular dose in molybdenum target-rhodium filter and rhodium target-rhodium filter mammography. Radiology. 1994;193(1):83–9. PMID: 8090926.

    Article  CAS  PubMed  Google Scholar 

  26. Boone JM. Glandular breast dose for monoenergetic and high-energy X-ray beams: Monte Carlo assessment. Radiology. 1999;213(1):23–37. PMID: 10540637.

    Article  CAS  PubMed  Google Scholar 

  27. Dance DR, Skinner CL, Young KC, Beckett JR, Kotre CJ. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys Med Biol. 2000;45(11):3225–40. PMID: 11098900.

    Article  CAS  PubMed  Google Scholar 

  28. Dance DR, Young KC. Estimation of mean glandular dose for contrast enhanced digital mammography: factors for use with the UK, European and IAEA breast dosimetry protocols. Phys Med Biol. 2014;59(9):2127–37. PMID: 24699200.

    Article  CAS  PubMed  Google Scholar 

  29. Badr S, Laurent N, Régis C, Boulanger L, Lemaille S, Poncelet E. Dual-energy contrast-enhanced digital mammography in routine clinical practice in 2013. Diagn Interv Imaging. 2014;95(3):245–58. PMID: 24238816.

    Article  CAS  PubMed  Google Scholar 

  30. Jeukens CR, Lalji UC, Meijer E, Bakija B, Theunissen R, Wildberger JE, Lobbes MB. Radiation exposure of contrast-enhanced spectral mammography compared with full-field digital mammography. Investig Radiol. 2014;49(10):659–65. PMID: 24872005.

    Article  CAS  Google Scholar 

  31. James JR, Pavlicek W, Hanson JA, Boltz TF, Patel BK. Breast radiation dose with CESM compared with 2D FFDM and 3D tomosynthesis mammography. AJR Am J Roentgenol. 2017;208(2):362–72. PMID: 28112559.

    Article  PubMed  Google Scholar 

  32. Phillips J, Mihai G, Hassonjee SE, Raj SD, Palmer MR, Brook A, Zhang D. Comparative dose of contrast-enhanced spectral mammography (CESM), digital mammography, and digital breast tomosynthesis. AJR. 2018;211:839–46.

    Article  PubMed  Google Scholar 

  33. Food and Drug Administration. Mammography quality standards act regulations. https://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/Regulations/ucm110906.htm#s90012. Accessed 13 Sept 2018.

  34. National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC: National Academic Press; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile R. L. P. N. Jeukens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeukens, C.R.L.P.N. (2019). Physics of Contrast-Enhanced Mammography. In: Lobbes, M., Jochelson, M. (eds) Contrast-Enhanced Mammography . Springer, Cham. https://doi.org/10.1007/978-3-030-11063-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11063-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11062-8

  • Online ISBN: 978-3-030-11063-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics