Extraction of Hypernyms from Dictionaries with a Little Help from Word Embeddings

  • Maria KaryaevaEmail author
  • Pavel Braslavski
  • Yury Kiselev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11179)


The paper investigates several techniques for hypernymy extraction from a large collection of dictionary definitions in Russian. First, definitions from different dictionaries are clustered, then single words and multiwords are extracted as hypernym candidates. A classification-based approach on pre-trained word embeddings is implemented as a complementary technique. In total, we extracted about 40K unique hypernym candidates for 22K word entries. Evaluation showed that the proposed methods applied to a large collection of dictionary data are a viable option for automatic extraction of hyponym/hypernym pairs. The obtained data is available for research purposes.


Hypernymy Semantic relations Thesaurus Word2vec 



MK was supported by RFBR grant #15-37-50912, PB and YK were supported by RFH grant #16-04-12019.


  1. 1.
    Baroni, M., Bernardi, R., Do, N.Q., Shan, C.: Entailment above the word level in distributional semantics. In: EACL, pp. 23–32 (2012)Google Scholar
  2. 2.
    Caraballo, S.A.: Automatic construction of a hypernym-labeled noun hierarchy from text. In: ACL (1999)Google Scholar
  3. 3.
    Cederberg, S., Widdows, D.: Using LSA and noun coordination information to improve the precision and recall of automatic hyponymy extraction. In: CoNLL, pp. 111–118 (2003)Google Scholar
  4. 4.
    Fu, R., Guo, J., Qin, B., Che, W., Wang, H., Liu, T.: Learning semantic hierarchies via word embeddings. In: ACL, pp. 1199–1209 (2014)Google Scholar
  5. 5.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: COLING, pp. 539–545 (1992)Google Scholar
  6. 6.
    Hu, J., et al.: Enhancing text clustering by leveraging wikipedia semantics. In: SIGIR, pp. 179–186 (2008)Google Scholar
  7. 7.
    Kiselev, Y., et al.: Russian lexicographic landscape: a tale of 12 dictionaries. In: Dialog (2015)Google Scholar
  8. 8.
    Kiselev, Y., Porshnev, S., Mukhin, M.: Method of extracting hyponym-hypernym relationships for nouns from definitions of explanatory dictionaries. Softw. Eng. 10, 38–48 (2015). (in Russian)Google Scholar
  9. 9.
    Kozareva, Z., Riloff, E., Hovy, E.: Semantic class learning from the web with hyponym pattern linkage graphs. In: ACL-HLT, pp. 1048–1056 (2008)Google Scholar
  10. 10.
    Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: AIST, pp. 155–161 (2017)Google Scholar
  11. 11.
    Loukachevitch, N., Lashevich, G.: Multiword expressions in Russian thesauri RuThes and RuWordnet. In: AINL, pp. 1–6 (2016)Google Scholar
  12. 12.
    Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word representations. In: NAACL, pp. 746–751 (2013)Google Scholar
  13. 13.
    Navigli, R., Ponzetto, S.P.: BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Navigli, R., Velardi, P., Faralli, S.: A graph-based algorithm for inducing lexical taxonomies from scratch. In: IJCAI, vol. 11, pp. 1872–1877 (2011)Google Scholar
  15. 15.
    Ponzetto, S.P., Strube, M.: Deriving a large scale taxonomy from Wikipedia. In: AAAI, vol. 7, pp. 1440–1445 (2007)Google Scholar
  16. 16.
    Roller, S., Erk, K., Boleda, G.: Inclusive yet selective: supervised distributional hypernymy detection. In: COLING, pp. 1025–1036 (2014)Google Scholar
  17. 17.
    Sabirova, K., Lukanin, A.: Automatic extraction of hypernyms and hyponyms from russian texts. In: AIST, pp. 35–40 (2014)Google Scholar
  18. 18.
    Shudo, K., Kurahone, A., Tanabe, T.: A comprehensive dictionary of multiword expressions. In: ACL-HLT, pp. 161–170 (2011)Google Scholar
  19. 19.
    Shwartz, V., Goldberg, Y., Dagan, I.: Improving hypernymy detection with an integrated path-based and distributional method. In: ACL, pp. 2389–2398 (2016)Google Scholar
  20. 20.
    Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hypernym discovery. In: NIPS, pp. 1297–1304 (2005)Google Scholar
  21. 21.
    Vylomova, E., Rimell, L., Cohn, T., Baldwin, T.: Take and took, gaggle and goose, book and read: evaluating the utility of vector differences for lexical relation learning. In: ACL, pp. 1671–1682 (2016)Google Scholar
  22. 22.
    Widdows, D., Dorow, B.: A graph model for unsupervised lexical acquisition. In: COLING, pp. 1–7 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maria Karyaeva
    • 1
    Email author
  • Pavel Braslavski
    • 2
  • Yury Kiselev
    • 3
  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia
  3. 3.YandexYekaterinburgRussia

Personalised recommendations